期刊文献+

Caputo型分数阶微分方程边值问题解的存在唯一性 被引量:1

Existence and Uniqueness of Solutions of Boundary Value Problem for a Caputo-type Fractional Differential Equation
下载PDF
导出
摘要 主要探讨一类Caputo型分数阶微分方程边值问题解的存在唯一性.通过将边值问题转化为等价的Fredholm积分方程,在巴拿赫空间上运用不动点定理,证明了积分方程解的存在性和唯一性. The existence and uniquness of solutions of boundary value problem for a Caputo-type fractional differential equation were investigated.By transforming the boundary value problem into an equivalent Fredholm integral equation, and employing fixed point theorem in a Banach space, the existence and uniqueness of the solutions of the integral equation was proved.
作者 杨帅 张淑琴
出处 《郑州大学学报(理学版)》 CAS 北大核心 2017年第2期1-6,共6页 Journal of Zhengzhou University:Natural Science Edition
基金 国家自然科学基金项目(11371364)
关键词 Caputo型分数阶微分方程 边值问题 FREDHOLM积分方程 不动点 Caputo-type fractional differential equation boundary value problem Fredholm integral equation fixed point
  • 相关文献

参考文献2

二级参考文献25

  • 1宋福民.Banach空间中两点边值问题的解[J].数学年刊(A辑),1993,1(6):692-697. 被引量:39
  • 2李永祥.抽象半线性发展方程初值问题解的存在性[J].数学学报(中文版),2005,48(6):1089-1094. 被引量:66
  • 3刘式达,时少英,刘式适,梁福明.天气和气候之间的桥梁——分数阶导数[J].气象科技,2007,35(1):15-19. 被引量:15
  • 4Bai Zhanbin, Lu Haishen. Positive solutions for boundary value problems of nonlinear fractional differential equation [J]. J Math Anal Appl,2005,311 (2) :495 - 505.
  • 5Jiang Daqing, Yuan Chengjun. The positive properties of the Green function for Dirichlet-type boundary value problems of non- linear fractional differential equation and its application [J]. Nonlinear Anal,2010,72 ( 2 ) :710 - 719.
  • 6Zhang Shuqin. Positive solutions for boundary-value problems of nonlinear fractional differential equations[J]. Electronic J Differential Equations, 2006,2006 (36) : 1 - 12.
  • 7Zhang Shuqin, Su Xinwei. The existence of a solution for a fractional differential equation with nonlinear boundary conditions considered using upper and lower solutions in reverse order[ J ]. Comput Math Appl,2011,62 (3) :1269 -1274.
  • 8Lin Legang, Liu Xiping, Fang Haiqin. Method of upper and lower solutions for fractional differential equations[ J]. Electronic J Differential Equations,2012,2012(100) :1 - 13.
  • 9Guo Dajun, Lakshmikantham V. Multiple solutions of two-point boundary value problems of ordinary differential equations in Ba- nach spaces[J]. J Math Anal Appl,1988,129(1) : 211 -222.
  • 10余庆余.Banach空间中凝聚映射及其不动点[J].兰州大学学报:自然科学版,1979,15(3):1-5.

共引文献8

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部