摘要
讨论Hadamard矩阵对应的简单图类的邻接矩阵的特征及其相互关系 ,证明了 1- 4阶Hadamard矩阵对应的图只有 K1、K2 ∪K2 、K3 ∪K1和K4;偶图G 的邻接矩阵是Hadamard矩阵充分必要条件是 G =K2 ∪K2 .
We discuss the characteristic of Hadamard matrices corresponding Graphs. We prove the adjacency matrices of K 1, K 2∪K 2, K 3∪K 1,K 4 alone are Hadamard matrices in 4 order graphs. We also prove an adjacency matrix of bipartite graph G is Hadamard matrix, its sufficient and necessary condition is G=K 2∪K 2.
出处
《哈尔滨工程大学学报》
EI
CAS
CSCD
2002年第4期128-130,共3页
Journal of Harbin Engineering University