期刊文献+

基于深度学习的图像超分辨率复原研究进展 被引量:69

Review on Deep Learning Based Image Super-resolution Restoration Algorithms
下载PDF
导出
摘要 图像超分辨率复原(Super resolution restoration,SR)技术是图像处理领域的研究热点,在视频监控、图像处理、刑侦分析等领域具有广泛的应用需求.近年来,深度学习在多媒体处理领域迅猛发展,基于深度学习的图像超分辨率复原技术已逐渐成为主流技术.本文主要对现有基于深度学习的图像超分辨率复原工作进行综述.从网络类型、网络结构、训练方法等方面分析现有技术的优势与不足,对其发展脉络进行梳理.在此基础上,本文进一步指出了基于深度学习的图像超分辨率复原技术的未来发展方向. Super resolution image restoration technology is a hot field of image processing in the field of video surveillance, image processing, forensic analysis, with a wide range of application requirements. In recent years, the rapid development of deep learning in the field of multimedia processing, deep learning based super-resolution images restoration has gradually become a mainstream technology. This paper reviews the existing deep learning based image super-resolution restoration work. In terms of network type, network structure, and training methods, the advantages and disadvantages of the prior art are analyzed and the development contexts are sorted out. On this basis, the paper further points out the future direction of the restoration technique based on deep learning of the super-resolution image.
出处 《自动化学报》 EI CSCD 北大核心 2017年第5期697-709,共13页 Acta Automatica Sinica
基金 国家自然科学基金(61471013 61370189 61372149 61531006) 北京市自然科学基金(4142009 4163071) 北京市属高等学校高层次人才引进与培养计划(CIT&TCD201404043 CIT&TCD20150311) 北京市教育委员会科技发展计划(KM201510005004 KM201410005002) 北京市属高等学校人才强教计划(PHR(IHLB))资助~~
关键词 超分辨率复原 深度神经网络 卷积神经网络 循环神经网络 Super resolution restoration (SR), deep neural networks, convolutional neural network (CNN), recurrent neural network
  • 相关文献

参考文献6

二级参考文献91

  • 1章卫祥,周秉锋.一个稳健的用于HDR图像的相机响应函数标定算法[J].计算机学报,2006,29(4):658-663. 被引量:17
  • 2Park S C, Park M K, Kang M G. Super-resolution image re- construction : a technical review [ J ]. IEEE signal processing magazine ,2003,20(3 ) :21 - 36.
  • 3Qiu G P, Reinhard E, Finlayson G. Special issue on high dy- namic range imaging [ J ]. Journal of Visual Communication and Image Representation,2007,18 (5) : 357 - 358.
  • 4Morse B S, Schwartzwald D. Image magnification using level- set reconstruction[ A ]. Proceedings of the 2001 IEEE Com- puter Society Conference on Computer Vision and Pattern Recognition [ C ]. Kauai, Hawaii, USA ,2001,1:333 - 340.
  • 5Aly H A, Dubois E. Image up-sampling using total-variation regularization with a new observation model [ J ]. IEEE Trans actions on Image Processing,2005,14(10) :1647 -1659.
  • 6Zhang X L, Lam K M, Shen L S. Image magnification based on adaptive MRF model parameter estimation [ A ]. Proceed- ings of 2005 International Symposium on Intelligent Signal Processing and Communication Systems [ C ]. Hong Kong, 2005:653 - 656.
  • 7Zhang X L, Lam K M, Shen L S. Image magnification based on a blockwise adaptive Markov random field model [ J 1. Im- age and Vision Computing, 2008,26 (9).
  • 8Aly H A. Regularized image up-sampling[ D ]. Ottawa: Uni- versity of Ottawa,2004.
  • 9Chang M M, Tekalp A M, Sezan M I. Simultaneous motion estimation and segmentation [ J ]. IEEE Transactions on Im- age Processing, 1997,6(9) : 1326 - 1333.
  • 10Konrad J, Dubois E. Bayesian estimation of motion vector fields[ J ]. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 1992,14 (9) :910 - 927.

共引文献235

同被引文献320

引证文献69

二级引证文献541

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部