期刊文献+

不同Si_3N_4相涂层坩埚中全熔多晶硅锭的制备及表征

Preparation and Characterization of Molten Multi-crystalline Silicon Ingot in Crucible Coated with Different Si_3N_4 Coatings
下载PDF
导出
摘要 以α-Si_3N_4和β-Si_3N_4粉为原料,采用免烧结工艺在坩埚内壁上分别制备了α-Si_3N_4涂层、β-Si_3N_4涂层以及二者质量比为1∶1的复合涂层,然后在这些涂层坩埚中制备得到了多晶硅铸锭,观察了涂层和硅锭的表面形貌,测试了硅锭的表面粗糙度、晶粒大小以及红区长度。结果表明:α-Si_3N_4涂层表面粗糙不平、起伏不均匀,对应硅锭的表面粗糙度和晶粒尺寸最大,红区最长;β-Si_3N_4涂层表面较平整且起伏均匀,对应硅锭的表面粗糙度最小,晶粒尺寸较小,红区最短;复合涂层的表面粗糙度介于上述二者之间,对应硅锭的晶粒尺寸最小,红区长度介于二者之间。 With α-Si3N4 and β-Si3N4 powders as raw materials, the α-Si3N4coating, β-Si3N4 coating and composite coating of a-Si3 N4 and β-Si3N4, whose mass ratio was 1:1, were prepared on the inner-wall of crucible by the non-sintering process, respectively, and then the multi-crystalline silicon ingots were obtained in the coated crucible. The surface morphology of the coatings and silicon ingots were observed and the surface roughness, grain size and length of red zone for silicon ingot were measured. The results show that the surface of α-Si3N4 coating was rough and undulating unevenly, and the surface roughness and grain size of the corresponding silicon ingot was the largest and the red zone was the longest. The surface of β-Si3N4 coating was relatively smooth and undulating evenly; the surface roughness of the corresponding silicon ingot was the smallest, the grain size was relatively small and the red zone was the shortest. The surface roughness degree of composite coating was between those of the above two coatings; the grain size of the corresponding silicon ingot was the smallest and the length of red zone was between the above two silicon ingots.
出处 《机械工程材料》 CSCD 北大核心 2017年第5期59-62,共4页 Materials For Mechanical Engineering
基金 河南省科技发展计划项目(142102210428)
关键词 表面粗糙度 Si3N4涂层 红区长度 晶粒尺寸 surface roughness Si3N4 coating length of red zone grain size
  • 相关文献

参考文献3

二级参考文献33

  • 1温宏权,毛协民,张军,傅恒志.太阳能级硅的电磁约束感应熔炼[J].太阳能学报,1996,17(4):344-347. 被引量:4
  • 2ARAFUNE K, OHISHI E, SAI H,et al. Directional .solidification of polycrystalline silicon ingots by successive relaxation of super- cooling method[J]. J Crystal Growth, 2007,308(1): 5-9.
  • 3ISTRATOV A A, BUONASSISI T, PICKETT M D, et al. Control of metal impurities in "dirty" multicrystalline silicon for solar cells[J]. Material Science and Engineering B, 2006, 134(2/3) : 282-286.
  • 4CHANEY R E, VARKER C J. The erosion of materials in molten silicon[J]. J Electrochem Soc, 1976,123 (6) : 846-852.
  • 5EL-KADDAH, PIWONKA N H, BERRY T S, et al. Induc- tion melting of metals without a crucible: US, 5014769[P]. 1991-05-14.
  • 6RAVISHANKAR P S. Liquid encapsulated bridgman (LEB) method for directional solidification of silicon using calcium chloride[J]. J Crystal Growth, 1989,94 (1) : 62-68.
  • 7PHILIP R C, ROBERT V J, TRENTON N J. Preparation of reactive materials in a molten non-reactive lined crucible: US, 2872299[P]. 1959-02-03.
  • 8CISZEK T F. The capillary action shaping technique and its application [C]//Crystals-Growth, Properties, and Applica- tions. Berlin: Springer-Verlag: 1981 : 110-146.
  • 9杜光庭,周卫,侯悦.氮化硅涂层坩埚..中国:CN87206316U[P].1987-12-30.
  • 10恩格勒·M,莱斯尼亚克·C,乌伊贝尔·K.含有氮化硅的耐久性硬质涂层..中国:CN1955228A[P].2007-05-02.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部