期刊文献+

基于预报单光子源和探测器诱骗态的循环差分相移量子密钥分发协议 被引量:10

Round Robin Differential Phase Shift Quantum Key Distribution Protocol Based on Heralded Single Photon Source and Detector Decoy State
原文传递
导出
摘要 提出一种基于预报单光子源和探测器诱骗态的循环差分相移量子密钥分发协议,简称HSPS-DD-RRDPSQKD协议。在详细推导协议密钥生成率的基础上,给出了相关数值仿真,并分别与基于弱相干光源和探测器诱骗态的循环差分相移量子密钥分发(WCS-DD-RRDPS-QKD)协议和诱骗态的BB84协议进行了性能比较。结果表明,随着脉冲序列长度L的增大,其密钥生成率和最远传输距离都相应减小;当脉冲序列长度L=16时,HSPS-DDRRDPS-QKD协议较WCS-DD-RRDPS-QKD协议,安全通信距离提高了约100km,密钥生成率提升了近一个数量级;当系统错误率为9.5%时,HSPS-DD-RRDPS-QKD协议的密钥生成率较诱骗态的BB84协议的提升了近两个数量级。 A novel round robin differential phase shift quantum key distribution protocol based on heralded single photon source and detector decoy state is proposed, which is named as HSPS-DD-RRDPS-QKD protocol. The key generation rate of the proposed protocol is derived in detail, and the relevant numerical simulation is presented. The performance of the proposed protocol is compared with that of the round robin differential phase shift quantum key distribution based on weak coherent source and detector decoy state (named WCS-DI)-RRDPS-QKD) protocol and that of the decoy state BB84 protocol, respectively. The results show that the key generation rate and the farthest transmission distance decrease with the increase of the pulse sequence length L. When the pulse sequence length L = 16, the security communication distance of the HSPS-DD-RRDPS-QKD protocol increases by nearly 100 km and the key generation rate increases by one order of magnitude compared with those of the WCS-DD-RRDPS-QKD protocol. When the system error rate is 9.5%, the key generation rate of the HSPS-DD-RRDPS-QKD protocol is nearly two orders of magnitude higher than that of the decoy state BB84 protocol.
出处 《光学学报》 EI CAS CSCD 北大核心 2017年第5期331-337,共7页 Acta Optica Sinica
基金 国家自然科学基金(61475075 61271238) 江苏省普通高校研究生科研创新计划项目(KYLX15_0832) 南京邮电大学宽带无线通信与传感网技术教育部重点实验室开放研究基金(NYKL2015011)
关键词 量子光学 量子密钥分发 循环差分相移量子密钥分发 预报单光子源 探测器诱骗态 quantum optics quantum key distribution round robin differential phase shift quantum key distribution heralded single photon source detector decoy state
  • 相关文献

参考文献5

二级参考文献102

  • 1C H Bennett, G Brassard. Quantum crytography: publicc key distribution and coin tossing[C]. Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, 1984: 175-179.
  • 2D stucki, N Walenta, F Vannel, et al.. High rate, long distance quantum key distribution over 250km of ultra-low loss fibres[J]. New Journal of Physics, 2009,11 (7): 075003.
  • 3T C Ralph. Continuous variable quantum cryptography[J]. Phys Rev A, 1999, 61(1): 010303.
  • 4F Grosshans, G V Assche, J Wenger, et al.. Quantum key distribution using guassian-modulated coherent states[J]. Nature, 2003, 421(6920): 238-241.
  • 5F Grosshans, P Grangier. Continuous variable quantum cryptography using coherent states[J]. Phys Rev Lett, 2002, 88(5): 057902.
  • 6C Weedbrook, A M Lance, W P Bowen, et aL. Quantum cryptography without swithching[J]. Phys Rev Lett, 2004,93(17):170504.
  • 7A M Lance, T Symul, V Sharma, et aL. No-switching quantum key distribution using broadband modulated coherent light[J]. Phys Rev Lett, 2005, 95(18): 180503.
  • 8B Qi, L L Huang, L Qian, et aL. Experimental study on the Gaussian modulated coherent-state quantum key distribution over standard telecommunication fibers[J]. Phys Rev A, 2007, 76(5): 052323.
  • 9A Leverrier, P Grangier. Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation[J]. Phys Rev Lett, 2009, 102(18): 180504.
  • 10Y Shen, H X Zou, L A Tian, et al.. Experimental study on discretely modulated continuous-variable quantum key distribution[J]. Phys Rev A, 2010, 82(2): 022317.

共引文献47

同被引文献34

引证文献10

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部