期刊文献+

基于线性回归变量误差模型的工具变量法与校正似然法的比较

Comparison of Instrumental Variable Estimation and Corrected Likelihood Method Based on Linear regression measurement error models
下载PDF
导出
摘要 文章介绍了线性回归变量误差模型参数估计的两种方法——工具变量法和校正似然法,然后通过数值模拟的方式对这两种方法的估计结果进行比较,说明这两种方法在不同假定下估计的优劣,最后通过实例计算来进行验证,并得到一些有用的结论。 This paper introduces two methods of parameter estimation of linear regression measurement error models--Instrumental Variable Estimation and Corrected Likelihood Method. And then numerical simulation is given to compare the estimation results of the two methods. Advantages and disadvantages of these two methods under different assumptions are also described in the paper. Finally some useful conclusions are obtained through the case calculation and verification.
作者 关静 陈永沛
出处 《统计与决策》 CSSCI 北大核心 2017年第10期81-84,共4页 Statistics & Decision
关键词 线性回归 变量误差模型 工具变量法 校正似然法 linear regression variable error models instrumental variable estimation correction likelihood method
  • 相关文献

参考文献2

二级参考文献26

  • 1Wayne A. Fuller. Measurement Error Models [M]. John Wiley & Sons, Inc, 1987.
  • 2Bruce Hansen. Econometrics [M]. Manuscript, University of Wisconsin, 2006.
  • 3Chen S X, Cui H J. An extended empirical likelihood for generalized linear models. Statist Sinica, 2003, 13:69- 81.
  • 4Cui H J, Chen S X. Empirical likelihood confidence region for parameter in the errors-in-variables models. J Multi- variate Anal, 2003, 84:101 -115.
  • 5Cui H J, Kong E F. Empirical likelihood confidence region for parameters in semi-linear errors-in-variables models. Scand J Statist, 2006, 33:153-168.
  • 6Firth D. On the efficiency of quasi-likelihood estimation. Biometrika, 1987, 74:233 -245.
  • 7Hammer S M, Katzenstein D A, Hughes M D, et al. A trial comparing nucleoside Ionotherapy with combination therapy in HIV-infected adults with cd4 cell counts from 200 to 500 per cubic millimeter. New England J Medicine, 1996, 335:1081 -1090.
  • 8Huang Y, Wang C Y. Consistent functional methods for logistic regression with errors in covariates. J Amer Statist Assoc, 2001, 96:1469-1482.
  • 9Kolaczyk E D. Empirical likelihood for generalized linear models. Statist Sinica, 1994, 4:199- 218.
  • 10Li G R, Lin L, Zhu L X. Empirical likelihood for varying coetticient partially linear model with diverging number of parameters. J Multivariate Anal, 2012, 105:85- 111.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部