期刊文献+

一种融合个性化与多样性的人物标签推荐方法 被引量:6

User Tag Recommendation with Personalization and Diversity
下载PDF
导出
摘要 针对人物标签推荐中多样性及推荐标签质量问题,该文提出了一种融合个性化与多样性的人物标签推荐方法。该方法使用主题模型对用户关注对象建模,通过聚类分析把具有相似言论的对象划分到同一类簇;然后对每个类簇的标签进行冗余处理,并选取代表性标签;最后对不同类簇中的标签融合排序,以获取Top-K个标签推荐给用户。实验结果表明,与已有推荐方法相比,该方法在反映用户兴趣爱好的同时,能显著提高标签推荐质量和推荐结果的多样性。 To take full advantage of user's social characteristics and address the diversity of tag recommendation, we present a method for user tag recommendation, aiming to combine user's social characteristics and the diversity of tag recommendation. We use topic model to get a user's potential semantic topics from his tweets, and then cluster the users followed by this user, i.e. using the potential semantic topics to divide the users into different areas. Each area can reflect the interest that attracts the user to follow. We select several representative tags by sorting the tags in the area based on TF-IDF. Then, we combine and sort different areas of representative tags to get top-K tags for recommendation. Experiment shows that our approach not only can recommend diversity tags but also reflect the user's interest and hobbies.
出处 《中文信息学报》 CSCD 北大核心 2017年第2期154-162,共9页 Journal of Chinese Information Processing
基金 863项目(2014AA015204) 国家自然科学基金(61402442) 973项目(2014CB340406)
关键词 人物标签推荐 多样性推荐 标签冗余 标签质量 user tag recommendation recommendation diversity tag redundancy tag quality
  • 相关文献

参考文献3

二级参考文献27

  • 1Java A, Song Xiaodan, Finin T, et al. Why we Twitter: Understanding microblogging usage and communities [ C ]// Proceedings of the 9th WebKDD and 1st SNA - KDD 2007 Workshop on Web Mining and Social Netwm'k Analysis. New York : ACM ,2007:56 - 65.
  • 2Iwata T, Yamada T, Ueda N. Modeling social annotation data with content relevance using a topic model [C]//Advances in Neural Infonnation Processing Systems. New York :ACM, 2009:835 - 843.
  • 3Jaschke R, Marinho L, Ho/ho A, et al. Tag recommendations in social bookmarking systems [J]. Ai Communications, 2008, 21 (4) :231 -247.
  • 4Liu Zhiyuan, Chen Xinxiong, Sun Maosong. A simple word trigger method for social tag suggestion [C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2011 : 1577 - 1588.
  • 5Rendle S, Marinho L B, Nanopoulos A, et al. Learning optimal ranking with tensor factorization for tag recommendation [ C ]// Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009 : 727 - 736.
  • 6Si Xiance, Liu Zhiyuan, Sun Maosong. Modeling social annotations via latent reason identification[ J]. IEEE Intelligent Systems, 2010, 25 (6) :42 - 49.
  • 7Resnick P,Varian H R. Recommender systems [J]. Communications of the ACM, 1997, 40(3):56-58.
  • 8Garg N, Weber I. Personalized, interactive tag recommendation for flickr [C]//Proceedings of the 2008 ACM Conference on Recommender Systems. New York : ACM, 2008:65-74.
  • 9Li Xirong, Snoek C G, Worring M. Learning social tag relevance by neighbor voting[J]. Multimedia, IEEE Transactions on, 2009, 11(7) :1310 - 1322.
  • 10Blei D M, Ng A Y, Jordan M I. Latent Dirichlet Allocation [ J ]. The Journal of Machine Learning Research, 2003 (3) :993 - 1022.

共引文献33

同被引文献52

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部