期刊文献+

基于无指导学习的微博评论分析方法 被引量:3

Unsupervised Microblog Comment Analysis
下载PDF
导出
摘要 该文以一种有效的方法寻找出有价值的微博评论,这对于读者更高效地阅读评论,为舆情分析、文本挖掘等任务提供支持,均具有重要的应用价值。针对微博及其评论文本短小、内容发散等特点,该文提出一种基于无指导学习的微博评论分析方法,该方法通过互联网搜索引擎扩展微博文本,基于相关性计算自动构造正负训练用例,生成特定的某条微博评论分类模型,通过该模型对评论的价值性进行评估。实验结果表明,该方法能够比较好地识别出评论的价值。 The valuable microblog comments can be supplied to the readers, or be provided to some tasks like public opinion analysis and text mining. To detect such valuable comment, this paper presents an unsupervised comments analysis method. Firstly, we use the search engine to expand the microblog text. Secondly, we use the correlation measure to get the most valuable comments and the most invaluable comments, respectively. Finally, we generate a comment classification model to assess the comment value. The experimental results show our method performs well on the task of valuable comments recognition.
出处 《中文信息学报》 CSCD 北大核心 2017年第2期179-186,共8页 Journal of Chinese Information Processing
基金 国家自然科学基金(61170181) 江苏省自然科学基金(BK2011192) 国家社会科学基金(11AZD121)
关键词 微博评论 价值性 无指导学习 评论过滤 microblog comment value unsupervised comment filter
  • 相关文献

同被引文献60

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部