摘要
In this article, we study the 1-dimensional bipolar quantum hydrodynamic model for semiconductors in the form of Euler-Poisson equations, which contains dispersive terms with third order derivations. We deal with this kind of model in one dimensional case for general perturbations by constructing some correction functions to delete the gaps between the original solutions and the diffusion waves in L2-space, and by using a key inequality we prove the stability of diffusion waves. As the same time, the convergence rates are also obtained.
In this article, we study the 1-dimensional bipolar quantum hydrodynamic model for semiconductors in the form of Euler-Poisson equations, which contains dispersive terms with third order derivations. We deal with this kind of model in one dimensional case for general perturbations by constructing some correction functions to delete the gaps between the original solutions and the diffusion waves in L2-space, and by using a key inequality we prove the stability of diffusion waves. As the same time, the convergence rates are also obtained.
基金
X.Li’s research was supported in part by NSFC(11301344)
Y.Yong’sresearch was supported in part by NSFC(11201301)