期刊文献+

一种基于免疫克隆聚类的模拟电路故障诊断方法 被引量:2

An Approach for Fault Diagnosis of the Analog Circuit Based on an Immune Clonal Algorithm
原文传递
导出
摘要 针对模拟电路故障诊断样本结构复杂、分类困难的问题,提出了一种基于免疫克隆聚类的故障诊断方法。在免疫克隆聚类的基础上,设计两个目标函数,既实现了类内的紧凑性,又兼顾了样本的连通性。通过核密度估计,解决了克隆方向性问题;通过混沌变异避免算法陷入局部极值。实验结果表明,该方法对复杂结构样本聚类效果好,适用于解决模拟电路故障诊断问题。 The fault diagnosis sample of analog circuit has a complex structure and is hard to be ctassttleO. Aiming at this problem, an approach based on immune clonal algorithm is proposed in this paper. Two objective functions are designed on immune clonal cluster to realize the compact category and the connectivity at the same time. The clone di- rection is determined by the kernel density estimation and the chaos variation is applied to avoid local extremum. Experi- mental result shows this method has better cluster effect in complex construction samples, and is suitable for analog cir-cuits.
作者 秦亮 王朕
出处 《仪表技术》 2017年第5期22-26,共5页 Instrumentation Technology
关键词 故障诊断 免疫克隆 聚类 fault diagnosis immune clonal cluster
  • 相关文献

参考文献1

二级参考文献11

  • 1叶阿忠.非参数计量经济模型的变窗宽核估计[J].福州大学学报(自然科学版),2006,34(2):180-183. 被引量:1
  • 2郭照庄,宋向东,张良勇,董晓芳.变窗宽密度核估计的构造及均方相合性[J].佳木斯大学学报(自然科学版),2006,24(3):423-425. 被引量:4
  • 3Ding X, Guo L, Frank P M. Parameterization of linear observes and its application to observer design [ J ]. IEEE Trans Autom Control, 1994, 39(8) : 1648 - 1652.
  • 4Ding S X, Jeinsch T, Frank P M, et al. A unified approach to the optimization of fault detection systems [ J ]. International Journal of Adaptive Control and Signal Processing, 2000, 14(5) : 725 - 745.
  • 5Michele Basseville. Detecting changes in signals and systems[J ]. Automatic, 1988, 24(3) : 309 - 326.
  • 6于传强.某武器系统信息化平台关键技术研究[D].西安:第二炮兵工程学院.2007.
  • 7Karnalaldin M, William Y D, I..an M. Probablity density estimation using incomplete data[J]. ISA Trans, 2000, 39:379 - 399.
  • 8Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete dsts via EM algorithm [J ]. Joural of Royal Statistical Society, Series B, 1997, 39:1 - 38.
  • 9Bolanee C, Guillen M, Nielsen J P. Kernel density estimation of actuarial loss functions[J]. Mathematics and Economies, 2003, 32 : 19 - 36.
  • 10Fukunaga K, Hostetler L D. The estimation of the gradient of a density function with applications in pattern recognition[J]. IEEE Trans Inforrmation Theory. 1975. 21 : 32 - 40.

共引文献9

同被引文献12

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部