期刊文献+

基于深度学习的视盘自动检测 被引量:3

Deep learning based on optic disk automatic detection
下载PDF
导出
摘要 传统的视盘检测需要手动提取视盘几何、血管和自身属性等特征,该方法在一定程度上依靠经验,且耗时耗力。基于卷积神经网络(CNN),使用两种网络结构,在两种不同大小的数据集上,自动提取视网膜图像中视盘的特征,并依据CNN特征进行视网膜图像中视盘的自动检测。研究采用深度学习架构Caffe,在公开的眼底图像数据集上进行了实验验证。结果表明,此方法简单易行,准确率高达98.04%,超过了现有方法。同时,通过实验得出了一些有益的结论,为进一步的研究工作奠定了基础。 Traditional Optic Disk (OD) detection is based on manual extracting features, which include OD' s geometry, blood vessels and own properties. OD is detected by these features. Unfortunately, this method is based on experience and fortune to some degree, the worse is that it is time -consuming and complicated. To address this problem, a method based on Convolution Neural Network (CNN) is proposed in this paper, which can automatically obtain the features of OD in retinal image on two kinds of nets and two different size data sets, then to locate OD via CNN characteristics of retinal image. The experiments on public fundus image data show that the accuracy rate reach 98.04% by using deep learning architecture Caffe. At the same time, experimental results show that method proposed in this study is simpler and more effective than the previous ones. What' s more, some useful conclusions are obtained through the analysis and explanation of the experimental data, which lay a solid foundation for further research.
出处 《贵州师范学院学报》 2017年第3期27-32,共6页 Journal of Guizhou Education University
基金 贵州省科技厅联合基金(黔科合LH字[2014]7597号) 遵义医学院硕士启动基金(编号:F-641)
关键词 视网膜图像 CNN特征 视盘 自动检测 Retinal image CNN feature Optic disk Automatic detection
  • 相关文献

参考文献1

二级参考文献6

  • 1Mahfouz A E, Fahmy A S. Uhrafast localization of the optic disc using dimensionality reduction of the search space [M] //Medical Image Computing and Computer -Assisted Intervention-MICCAI 2009. Springer Berlin Heidelberg, 2009:985-992.
  • 2Yu H, Barriga E S, Agurto C, et al. Fast localization and segmentation of optic disk in retinal images using directional matched filtering and level sets [J]. Information Technology in Biomedicine, IEEE Transactions on, 2012, 16(4):644-657.
  • 3Esmaeili M, Rabbani H, Dehnavi A M. Automatic optic disk boundary extraction by the use of curvelet transform and deformable variational level set model[J]. Pattern Recognition, 2012, 45(7):2832-2842.
  • 4戴培山,王博亮,鞠颖.视网膜血管图像分割及眼底血管三维重建[J].自动化学报,2009,35(9):1168-1176. 被引量:8
  • 5赵晓芳,林土胜,李碧.视网膜图像中视盘的快速自动定位方法[J].华南理工大学学报(自然科学版),2011,39(2):71-75. 被引量:10
  • 6汪亚明,郑凯,胡觉亮,包晓敏.一种眼底视盘图像的自动分割方法[J].北京生物医学工程,2000,19(4):198-199. 被引量:6

同被引文献9

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部