期刊文献+

集成PCA的改进树突状细胞算法 被引量:2

Improved dendritic cell algorithm integrated with principal component analysis
下载PDF
导出
摘要 通过将主成分分析(PCA)方法集成到树突细胞算法(DCA)的数据预处理过程中,提出一种可实现信号自动提取,并根据数据及时更新信号提取方案的PCA-DCA算法。利用PCA对样本高维数据进行降维处理,根据贡献度提取输入信号,通过改进的DCA算法对抗原进行分类与检测;通过监测记录的高维数据,不断更新主成分特征向量,保证降维后数据的有效性。通过KDD CUP99数据集对该算法进行验证,相较传统DCA算法,该算法实现了对多维数据的降维处理及对DCA输入信号的自动提取,对异常数据更加敏感,检测效率更高。 By integrating the principal component analysis method to the DCA's data pre-processing phase,an improved DCA with the signal presenting and updating automatically was proposed.The principal components analysis was used for the dimensionality reduction of high-dimensional data,and the DCA's input signal was presented according to the contribution,and these antigens were detected and classified using the improved DCA.The monitoring of high-dimensional data was tracked,principal component eigenvectors were updated constantly,to ensure the validity of dimensionality reduction.The dataset of KDD CUP99 was used to test this algorithm.Compared to traditional DCA,the dimensionality reduction and automatic pre-processing of DCA's input signal were achieved.Results show that the method is more sensitive to abnormity,and gets more effective detection rate.
出处 《计算机工程与设计》 北大核心 2017年第6期1414-1417,1472,共5页 Computer Engineering and Design
基金 军内科研预研基金项目
关键词 树突细胞算法 主成分分析 入侵检测 人工免疫 数据预处理 dendritic cell algorithm principal component analysis intrusion detection artificial immune data pre-processing
  • 相关文献

参考文献4

二级参考文献65

  • 1DASGUPTA D, YU S, MAJUMDAR N. MILA-multilevel immune learning algorithm and its application to anomaly detection [J]. Journal of Soft Computing, 2005, 9(3): 172-184.
  • 2SHELLY W, BANZHAF W. The use of computational intelligence in intrusion detection systems: A review [J], Journal of Applied Soft Computing, 2010, 10: 1—35.
  • 3FORREST S, PERELSON A S, ALLEN L, CHERUKURI R. Self-nonself discrimination in a computer [C]// Proceedings of 1994 IEEE Computer Society Symposium on Research in Security and Privacy. Oakland, CA, USA: IEEE Press, 1994: 202-212.
  • 4FORREST S, HOFMEYR S, SOMAYAJI A, LONGSTAFF T. A sense of self for Unix processes [C]// Proceedings of the 1996 IEEE Symposium on Security and Privacy. Los Alamitos, CA, USA: IEEE Computer Society Press, 1996: 120-128.
  • 5FORREST S, BEAUCHEMIN C. Computer Immunology [J]. Journal of Immunological Reviews, 2007,216 (1): 176-197.
  • 6FORREST S, HOFMEYR S, SOMAYAJI A. Computer immunology [J], Communications of the ACM, 1997,40(10): 88-96.
  • 7VELLA M, ROPER M, TERZIS S. Danger theory and intrusion detection: Possibilities and limitations of the analogy [C]// HART E, et al. International Conference on Artificial Immune Systems (ICARIS). Berlin Heidelberg: Springer-Verlag, 2010: 276-289.
  • 8de CASTRO L N, ZUBEN F J V. Learning and optimization using the clonal selection principle [J], IEEE Transactions on Evolutionary Computation, 2002, 6(3): 239—251.
  • 9de CASTRO L N. Immune, swarm, and evolutionary algorithms Part I: Basic models [C]// Proceedings of the ICONIP Conference (International Conference on Neural Information Processing). Workshop on Artificial Immune Systems. Singapore, 2002: 1464-1468.
  • 10GALEANO J C, VELOZA-SUAN A, GONZALEZ F A. A comparative analysis of artificial immune network models [C]// Proceedings of GECCO. Washington, DC, USA, 2005: 361-368.

共引文献7

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部