期刊文献+

Compositions,Proportions,and Equilibrium Temperature of Coexisting Two-feldspar in Crystalline Rocks 被引量:1

Compositions,Proportions,and Equilibrium Temperature of Coexisting Two-feldspar in Crystalline Rocks
下载PDF
导出
摘要 Compositions, proportions, and equilibrium temperature of coexisting two-feldspar in crystalline rocks are of great importance to classification in petrography and interpretation of petrogenesis. Crystalline rocks are usually composed of 4-6 minerals (phases), depending on their independent chemical components and the equilibrium temperature of crystallizations. In general, number of mineral phases can be determined by the "Phase Rule". According to the mass balance principle, bulk composition of coexisting two-feldspar could be evaluated from the bulk chemistry of a rock, provided that the compositions of the coexisting mafic mineral phases containing calcium, sodium, and potassium oxides are determined, e.g., by microprobe analysis. The compositions, proportions, and temperature of two-feldspar in equilibrium can thus be simultaneously resolved numerically from bulk composition of the rock, by incorporating the activity/composition relations of the ternary feldspars with the mass balance constraints. Upon the numerical approximation method presented in this paper, better-quality, internally consistent data on feldspar group could usually be obtained, which would be expected more realistic and accurate in consideration of thermodynamic equilibria in the system of crystalline rocks, as well as bulk chemistry of a rock and the composing minerals. Compositions, proportions, and equilibrium temperature of coexisting two-feldspar in crystalline rocks are of great importance to classification in petrography and interpretation of petrogenesis. Crystalline rocks are usually composed of 4-6 minerals (phases), depending on their independent chemical components and the equilibrium temperature of crystallizations. In general, number of mineral phases can be determined by the "Phase Rule". According to the mass balance principle, bulk composition of coexisting two-feldspar could be evaluated from the bulk chemistry of a rock, provided that the compositions of the coexisting mafic mineral phases containing calcium, sodium, and potassium oxides are determined, e.g., by microprobe analysis. The compositions, proportions, and temperature of two-feldspar in equilibrium can thus be simultaneously resolved numerically from bulk composition of the rock, by incorporating the activity/composition relations of the ternary feldspars with the mass balance constraints. Upon the numerical approximation method presented in this paper, better-quality, internally consistent data on feldspar group could usually be obtained, which would be expected more realistic and accurate in consideration of thermodynamic equilibria in the system of crystalline rocks, as well as bulk chemistry of a rock and the composing minerals.
出处 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第3期875-881,共7页 地质学报(英文版)
基金 granted by the National Eleventh Five-year Supporting Plan for Science and Technology (2006BAD10B04) China Geological Survey Project (12120113087700)
关键词 crystalline rocks mass balance principle feldspar proportion activity equation equilibrium temperature crystalline rocks, mass balance principle, feldspar proportion, activity equation,equilibrium temperature
  • 相关文献

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部