摘要
讨论了二维无界连通域上反常积分的敛散性.从柯西积分判别法出发,考察了三类特定区域上二元函数的反常积分,利用列维定理,得到了一些新的判别准则.
Discusses the convergence and divergence of improper integrals for multi-variable function on the unbounded connected domains. By using the Cauchy integration criterion, we investigate the improper integral on three special domain. With the help of the Cauchy integration criterion and Levi theorem, new criteria for convergence and divergence are presented.
出处
《大学数学》
2017年第3期89-94,共6页
College Mathematics
基金
中央高校基本科研业务费专项资金资助(2-9-2015-182)
关键词
二元函数反常积分
无界域
敛散性
绝对收敛
improper integral of multi-variable function
unbounded domain
convergence and divergence
absolute convergence