期刊文献+

基于红外光谱和极限学习机的润滑油水分检测 被引量:2

Lubricating Oil Moisture Detection Based on Infrared Spectrum and Extreme Learning Machine
下载PDF
导出
摘要 采用极限学习机方法建立润滑油水分的定量预测模型。该方法利用Kennard-Stone方法对样本进行划分,以减少建模的工作量和提高建模速度。采用极限学习机方法对某特种车润滑油的水分进行定量预测,并与偏最小二乘法和BP神经网络方法进行比较。结果表明,采用极限学习机方法所建模型更加稳健,预测结果更加精确,可作为该润滑油水分含量快速检测的手段。 The quantitative prediction model of the lubricating oil moisture was established by using the extreme learn- ing machine method, in which Kennard-Stone method was used to divide the sample so as to reduce the working of model- ing and improve the modeling speed.The quantitative prediction of the lubricating oil moisture for a special vehicle was car- fled out by the extreme learning machine method, and the predicted result was compared with that by the partial least square method and BP neural network method.Results show that the model based on the extreme learning machine method is more steady and the predicted result is more accuracy.The extreme learning machine method can be used as a rapid de- tection method of the lubricating oil moisture.
出处 《润滑与密封》 CAS CSCD 北大核心 2017年第6期79-82,125,共5页 Lubrication Engineering
关键词 润滑油 红外光谱 水分 极限学习机 lubricating oil infrared spectrum moisture extreme learning machine
  • 相关文献

参考文献5

二级参考文献29

共引文献44

同被引文献20

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部