期刊文献+

基于中文电子病历的跨科室组块分析 被引量:3

Cross-department chunking based on Chinese electronic medical record
下载PDF
导出
摘要 针对医疗领域的研究,发现了不同科室间电子病历存在着差异,但是新语料的标注成本又非常高。为了解决这一问题,利用迁移学习的方法在中文电子病历中进行跨科室组块分析的研究。在构建的中文电子病历中,对比了SSVM与CRF模型在词性标注和组块分析上的实验结果,发现SSVM模型的效果更好并选择该模型作为基本标注模型;此外,使用了改进的结构对应学习算法(SCL)进行组块分析,使得该算法能适用于SSVM模型进行领域适应。实验结果表明该算法有效地改善了序列标注任务中跨科室的领域适应性问题。 Aiming at the study of medical field, found that there were differences between Chinese electronic medical records (CEMRs) from different departments, but the cost of new annotated corpus was very expensive. To solve this problem, this paper applied a method of transfer learning in study of cross-department chunking based on Chinese electronic records. Comparing the performance of SSVM and CRF algorithms on part-of-speech(POS) tagging and chunking tasks in established CEMRs, found that SSVM was better, then chose this model to train the basic model. Moreover, this paper proposed a modified structural correspondence learning(SCL) algorithm to chunk, which adapted to SSVM algorithm for domain adaption on POS tagging and chunking tasks. The results of experiments show that this modified algorithm effectively improves domain adaptability between the different departments on sequence labeling tasks.
出处 《计算机应用研究》 CSCD 北大核心 2017年第7期2084-2087,共4页 Application Research of Computers
关键词 中文电子病历 词性标注 组块分析 领域适应 结构化支持向量机 Chinese electronic medical record part-of-speech tagging chunking domain adaptation structured SVM
  • 相关文献

参考文献3

二级参考文献102

  • 1Ben-David S,Blitzer J,Crammer K,Pereira F.Analysis of representations for domain adaptation.In:Platt JC,Koller D,Singer Y,Roweis ST,eds.Proc.of the Advances in Neural Information Processing Systems 19.Cambridge:MIT Press,2007.137-144.
  • 2Blitzer J,McDonald R,Pereira F.Domain adaptation with structural correspondence learning.In:Jurafsky D,Gaussier E,eds.Proc.of the Int’l Conf.on Empirical Methods in Natural Language Processing.Stroudsburg PA:ACL,2006.120-128.
  • 3Dai WY,Xue GR,Yang Q,Yu Y.Co-Clustering based classification for out-of-domain documents.In:Proc.of the 13th ACM Int’l Conf.on Knowledge Discovery and Data Mining.New York:ACM Press,2007.210-219.[doi:10.1145/1281192.1281218].
  • 4Dai WY,Xue GR,Yang Q,Yu Y.Transferring naive Bayes classifiers for text classification.In:Proc.of the 22nd Conf.on Artificial Intelligence.AAAI Press,2007.540-545.
  • 5Liao XJ,Xue Y,Carin L.Logistic regression with an auxiliary data source.In:Proc.of the 22nd lnt*I Conf.on Machine Learning.San Francisco:Morgan Kaufmann Publishers,2005.505-512.[doi:10.1145/1102351.1102415].
  • 6Xing DK,Dai WY,Xue GR,Yu Y.Bridged refinement for transfer learning.In:Proc.of the Ilth European Conf.on Practice of Knowledge Discovery in Databases.Berlin:Springer-Verlag,2007.324-335.[doi:10.1007/978-3-540-74976-9_31].
  • 7Mahmud MMH.On universal transfer learning.In:Proc.of the 18th Int’l Conf.on Algorithmic Learning Theory.Sendai,2007.135-149.[doi:10,1007/978-3-540-75225-7_14].
  • 8Samarth S,Sylvian R.Cross domain knowledge transfer using structured representations.In:Proc.of the 21st Conf.on Artificial Intelligence.AAAI Press,2006.506-511.
  • 9Bel N,Koster CHA,Villegas M.Cross-Lingual text categorization.In:Proc.of the European Conf.on Digital Libraries.Berlin:Springer-Verlag,2003.126-139.[doi:10.1007/978-3-540-45175-4_13].
  • 10Zhai CX,Velivelli A,Yu B.A cross-collection mixture model for comparative text mining.In:Proc.of the 10th ACM SIGKDD Int’l Conf.on Knowledge Discovery and Data Mining.New York:ACM,2004.743-748.[doi:10.1145/1014052.1014150].

共引文献495

同被引文献27

引证文献3

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部