期刊文献+

基于不变矩相似度的快速图像拼接 被引量:1

Fast image stitching based on similarity of invariant moments
下载PDF
导出
摘要 针对图像拼接中普遍存在的效率低和误匹配等问题,提出了一种基于不变矩相似度的快速拼接方法。首先利用不变矩相似度准则,预估输入图像的重叠区域,然后采用SIFT算法进行特征点检测和匹配,减少了不必要的特征提取和误匹配。利用稳健的RANSAC算法实现特征点提纯并计算单应性矩阵。最后,针对带运动目标的动态场景融合后易出现鬼影的现象,提出一种改进的分段线性加权融合算法以消除拼接鬼影。 For problems such as low efficiency and false matching in the prevalence of image stitching, this paper proposes a fast stitching method based on similarity of invariant moments. Firstly, it uses the similarity of invariant moments to estimate overlap area of the input images, and then uses SIFT( Scale-lnvariant Feature Transform)to detect and match feature points in the overlapping area, thus the unnecessary time of feature extraction and false matching are reduced. RANSAC(Random Sample Consensus)algorithm is used to refine the feature points and calculate homography. Finally, for dynamic scene easily appearing ghost phenomenon after fusion, an improved piecewise linear weighting fusion algorithm is put forward to eliminate ghost.
出处 《微型机与应用》 2017年第12期50-53,共4页 Microcomputer & Its Applications
关键词 图像拼接 不变矩 尺度不变特征变换 线性加权融合 鬼影 image stitching invariant moments scale-invariant feature transform linear weighted fusion ghost
  • 相关文献

参考文献7

二级参考文献76

  • 1陈付幸,王润生.基于预检验的快速随机抽样一致性算法[J].软件学报,2005,16(8):1431-1437. 被引量:106
  • 2Zhu Junchao, Zhou Jie, Zhang Baofeng. Research on moving human and vehicle's recognition algorithm [C]. Qinhuangdao : ICCDA, 2010.
  • 3Wen Ying, Lu Yue, Yah Jingqi, eta]. An algorithm for license plate recognition applied to intelligent transportation system [J]. IEEE Intelligent Transportation Systems Society, 2011, 13(3): 830-845.
  • 4Xie F, Xu G, Cheng Y, et al.Human body and posture recognition system based on an improved thinning algorithm[J]. Institution of Engineering and Technology,2011, 5 (5): 420-428.
  • 5NOOR A, MANIVANAN N, BALACHANDRAN W. Transformation invariant algorithm for automatic fingerprint recognition [J]. Institution of Engineering and Technology, 2012, 48(14) : 834-835.
  • 6LOWED. Object recognition from local scale-invariant features[C]. In: Proceedings of the 7th IEEE International Conference on Computer Vision, Corfu,US: IEEE, 1999: 1150-1157.
  • 7LOWE D G. Distinctive image features from scale-invari- ant keypoints[J]. International Journal of Computer Vision, 2004,60(2) :91-110.
  • 8Zhao Wanglei, NGO C W. Flip-invariant SIFT for copy and object detection[J]. Image Processing, IEEE, 2013,22 (3):980-991.
  • 9JUAN L,GWUN O. A comparison of SIFT, PCA-SIFT and SURF[J]. International Journal of Image Processing (IJIP), 2009,3(4): 143-152.
  • 10BAY H,ESS A,TUYTELAARS T,et al. Speeded up robust features(SURF)[J].Computer Vision and Image Understand- ing(CVIU), 2008,110(3): 346-359.

共引文献92

同被引文献9

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部