摘要
借助于含非光滑分界面的耦合Bohoffer-Van der Pol(BVP)电路系统,引入周期慢变的交流电源,构建两频域尺度的Filippov系统。利用微分包含理论,分析了尺度因素与非光滑因素相互作用的机理。当周期激励频率远远小于系统固有频率时,选取适当参数,得到了具有滑动结构的复杂周期簇发振荡,并结合理论分析揭示了滑动结构的产生机制。数值结果与理论分析吻合较好。
Based on the coupling Bohoffer-Van der Pol( BVP) circuit system with a non-smooth boundary,a Filippov system with two frequency scales was established by introducing a periodically changed current source. By utilizing the theory of differential inclusions,the mechanism of interaction between scale factor and non-smooth factor was analyzed. Suitable parameter values were selected so that an order gap existed between the driving frequency and the natural frequency. The complex periodic bursting oscillation with a sliding structure and corresponding generation mechanism were obtained according to the theoretical analysis. And numerical results support the theoretical analysis.
出处
《河南科技大学学报(自然科学版)》
CAS
北大核心
2017年第5期65-69,共5页
Journal of Henan University of Science And Technology:Natural Science
基金
国家自然科学基金项目(11472115
11472116)