期刊文献+

关于广义(s,m)-GA-凸函数的几个Simpson型积分不等式 被引量:4

Integral Inequalities of Simpson Type of Extended(s,m)-GA-convex Functions
下载PDF
导出
摘要 凸函数理论中,凸函数型积分不等式占有重要地位,广义凸函数的Simpson型积分不等式的研究非常活跃,且在不等式的证明中有广泛应用.本文利用广义(s,m)-GA-函数概念和H?lder积分不等式,研究了广义(s,m)-GA-凸函数的若干个新的Simpson型积分不等式,并给出了平均数方面的一些应用. In the analysis of inequalities,the Hermite-Hadamardintegral type integral inequalities of convex function play an important role, but have been used widely in the proof of inequality.The (s, m) -GA- function and HSlde integral inequality was used to develop new Simpson type integral inequality of (s, m) -GA-convex functions.
出处 《内蒙古民族大学学报(自然科学版)》 2017年第1期9-14,共6页 Journal of Inner Mongolia Minzu University:Natural Sciences
基金 国家自然科学基金项目(11361038) 内蒙古自治区自然科学基金项目(2015MS0123) 内蒙古自治区高等学校科学技术研究项目(NJ2216175) 内蒙古自治区研究生科研创新项目(S20161013601)
关键词 Simpson型积分不等式 凸函数 广义(s m)-GA-凸函数 Simpson type integral inequality Convex function Extended -GA-convex function
  • 相关文献

参考文献6

二级参考文献53

  • 1Ujevid N. Double integral inequalities of Simpson type and applications [J]. Journal of Applied Mathematics and Computing, 2004,14(1/2):213-223.
  • 2Sarikaya M Z, Set E, Ozdemir M E. On new inequalities of Simpson's type for s-convex functions [J]. Computers & Mathematics with Applications, 2010,60:2191-2199.
  • 3Chun L, Qi F. Inequalities of Simpson type for functions whose third derivatives are extended s-convex functions and applications to means [J]. Journal of Computational Analysis & Applications, 2015,19(3):555- 569.
  • 4Qaisar S, He C J, Hussain S. A generalizations of Simpson's type inequality for differentiable functions using (c, m)-convex functions and applications [J]. Journal of Inequalities and Applications, 2013.http://www.journal of inequalities and applications, corn/content/2013/1/158.
  • 5Hua J, Xi B Y, Qi F. Hermite-Hadamard type inequalities for geometric-arithmetically s-convex functions [J]. Communications of the Korean Mathematical Society, 2014,29(1):51-63.
  • 6Shuang Y, Yin H P, Qi F. Hermite-Hadamard type integral inequalities for geometric-arithmetically s-convex functions [J]. Analysis, 2013,33:197-208.
  • 7Park J.New Hermite-Hadamard-like type inequalities for twice differentiable (c, m)-GA-convex functions [J]. International Journal of Mathematical Analysis, 2013,7(51):2503-2515.
  • 8Xi B Y, Wang Y, Qi F. Some integral inequalities of Hermite-Hadamard type for extended (s, m)-convex functions [J]. Transylvanian Journal of Mathematics and Mechanics, 2013,5(1):69-84.
  • 9Eftekhari N. Some remark on (s, m)-convexity in the second sense [J].Journal of Mathematical Inequalities, 2014,8(3):489-495.
  • 10Liao Y M, Deng J H, Wang J R. Riemann-Liouville fractional Hermite-Hadamard inequalities. Part I: for once differentiable geometric-arithmetically s-convex functions [J/OL]. Journal of Inequalities and Applica- tions, 2013.http://www.journal of inequalities and applications.com/content/2013/1/443.

共引文献16

同被引文献14

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部