期刊文献+

Wick型随机KG方程的精确解 被引量:1

New Exact Solution of Wick-Type Stochastic KG Equation
原文传递
导出
摘要 利用白噪声分析、Hermite变换和双曲正切法来研究随机偏微分KleinGordon方程,并在Kondratiev分布空间(S)-1-上分别获得了变系数Klein-Gordon方程和Wick型随机Klein-Gordon方程的精确解和白噪声泛函解. Use Tanh method method, Hermite transform and white noise analysis to re-search stochastic coefficients Klein-Gordon equation, and on (S)_1- of Kondratiev distratievdistribution space, white noise functional solutions and exact solutions are obtained for vari-able coefficient Klein-Gordon equation and Wick-typestochastic Klein-Gordon equation.
作者 吴娇 韩艳娜
出处 《数学的实践与认识》 北大核心 2017年第11期226-231,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金(10671168) 河南省高等学校重点科研项目(17B110002)
关键词 KLEIN-GORDON方程 白噪声泛函解 Wick型随机方程 HERMITE变换 双曲正切法 Klein-Gordon equation white noise functional solution wick-type stochasticequation hermite transform tanh method method
  • 相关文献

参考文献5

二级参考文献36

  • 1吴娇,徐英.Wick型随机偏微分复合STO方程的精确解(英文)[J].徐州师范大学学报(自然科学版),2009,27(1):58-62. 被引量:4
  • 2Ablowitz M J, Clarkson P A. Solitons, Nonlinear Evolution Equations and Inverse Scattering[M]. Cambridge:Cambridge University Press, 1991.
  • 3Gao Yitian, Tian Bo. Variable-coefficient unstable nonlinear Schrodinger equation modeling electron beam plasma:auto-Backlund transformaion, soliton-typed and other analytical solutions[J]. Phys Plasmas, 2001,8(1) :67-73.
  • 4Tian Bo, Gao Yitian. Computer algebra, Painlev analysis and the time-dependent-coefficient nonlinear Schrodinger equation[J]. Compu. Math. Appl. ,1996.31(11) :115-119.
  • 5Xie Yingchao. Exact solutions for stochastic KdV equations[J]. Phys. Lett. A, 2003,310(2-3) :161-167.
  • 6Debussche A, Di Menza L. Numerical simulation of focusing stochastic nonlinear Schr6dinger equations [J]. Physica D. , 2002,162(3-4) : 131-154.
  • 7Mann H J. Stochastic mechanics and nonlinear Schrodinger equation[R]. Proceedings of the ⅩⅩⅩ Symposium on Mathematical Physics,Reports on Mathematical Physics, 1999,44(1-2) : 143-148.
  • 8Chen Bin,Xie Yingchao. White noise functional solutions of Wick-type stochastic generalized Hirota-Satsuma coupled KdV equations[J]. J. Comput. Appl. Math. ,2006,197(2) : 345-354.
  • 9Xie Yingchao. An auto-Backlund transformation and exact solutions for Wick-type stochastic generalized KdV equations[J]. J. Phys. A: Math. Gen. ,2004,37(19) :5229-5236.
  • 10Holden H, Φksendal B, Uboe J, et al. Stochastic Partial Differential Equations: a Modeling, White Noise Functional Approach[M]. Berlin: Birhkauser, 19 9 6.

共引文献7

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部