期刊文献+

基于多策略的私有云资源弹性调度方法 被引量:9

Elastic scheduling method for private cloud resources based on multi-strategy
下载PDF
导出
摘要 针对云计算环境下资源使用呈现的动态、随机、异构等特性,以及资源需求的不断提升给基础资源的管理、调度带来的巨大挑战及问题,提出了基于多策略的私有云资源弹性调度方法。首先在传统协作模型研究的基础上,通过提炼和概括云计算调度的主要组成构件,提出私有云资源调度总体框架;其次,在调度总体框架基础上,以资源的协同管理为核心,给出面向多触发条件的协同调度流程;最后,给出了触发条件中应用集群负载的计算方法。实验结果表明,提出的弹性调度方法能够自动实现虚拟机资源调度,从而优化应用集群CPU、内存、网络等性能。所提方法具有较强的可行性和实用性。 Concerning dynamic, stochastic heterogeneous characteristics of resource utilization and the challenges of management and scheduling of basic resources for continuous improvement of resource requirements, a method based on multistrategy was proposed to schedule private cloud resources flexibly. First of all, a general framework for resource scheduling was proposed by refining and summarizing the main components of cloud computing scheduling based on the traditional collaborative research model. Secondly, with the resource management as the core, the collaborative scheduling process oriented to multi-trigger condition was generated from the general framework. Finally, the calculation method of cluster load was put forward under the trigger condition. The experimental results show that the proposed method can flexibly schedule virtual machine resources automatically to optimize the performance such as CPU, memory, and network in application cluster.The proposed algorithm has strong feasibility and practicability.
出处 《计算机应用》 CSCD 北大核心 2017年第A01期34-38,共5页 journal of Computer Applications
基金 上海市科技人才计划项目(16XD1421500) 上海市科研计划项目(15511101503) 上海张江高新区专项(201505-ZB-C104-013) 上海市研发平台专项(14DZ2291200)
关键词 云计算 基础设施即服务 弹性调度 协同机制 CloudStack cloud computing Infrastructure as a Service ( IaaS) elastic scheduling collaboration mechanism CloudStack
  • 相关文献

参考文献16

二级参考文献223

  • 1周文煜,陈华平,杨寿保,方君.基于虚拟机迁移的虚拟机集群资源调度[J].华中科技大学学报(自然科学版),2011,39(S1):130-133. 被引量:37
  • 2王靖.“最大—最小”加权模糊逻辑[J].西安邮电学院学报,2006,11(1):94-96. 被引量:1
  • 3Foster I, Zhao Y, Raicu I, Lu SY. Cloud Computing and Grid Computing 360-Degree Compared. Grid Computing Environments Workshop, 2008,3-24.
  • 4Barham P, Dragovic B, Fraser K, eds. Xen and the art of virtualization. SOSP'03 proceedings of the nineteenth ACM symposium on Operating systems principles, 2003, 164-177.
  • 5Amazon EC2. http://aws.amazon.com/ec2/.
  • 6Meng XQ, Pappas v, Zhang L. Improving the Scalability of Data Center Networks with Traffic-aware Virtual Machine Placement. INFOCOM, 2010,I-2.
  • 7Deshane T, Shepherd Z, Matthews JN, eds. Quantitative Comparison of Xen and KVM. Xen Summit, 2008, June (23- 24): 1-2.
  • 8Bolte M, Sievers M, Birkenheuer G, eds. Non-intrusive Virtualization Management using libvirt. Design, Automation & Test in Europe Conference & Exhibition (DATE), 2010, 574-579.
  • 9Zhang B,Gao J,Ai J. Cloud loading balance algo-rithm: information science and engineering [C] /7(ICISE),2010 2nd International Conference on. Chi-ra: Hangzhou, 2010 :4-6.
  • 10Chang H H, Tang X H. A load-balance based re-source-scheduling algorithm under cloud computing en-vironment[J]. New Horizons in Web-Based Learning:ICWL 2010 Workshops, 2011( 6537):85-90.

共引文献297

同被引文献84

引证文献9

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部