摘要
Calmodulin (CAM) is involved in the regulation of a variety of cellular signaling pathways. To accomplish its physiological functions, CaM binds with Ca2+ at its EF-hand Ca2+ binding sites which induce the conformational switching of CaM. However, the molecular mechanism by which Ca2+ binds with CaM and induces conformational switching is still obscure. Here we combine molecular dynamics with targeted molecular dynamics simulation and achieve the state-transition pathway of CaM. Our data show that Ca2+ binding speeds up the conformational transition of CaM by weakening the interactions which stabilize the closed state. It spends about 6.5 ns and 5.25 ns for transition from closed state to open state for apo and holo CaM, respectively. Regarding the contribution of two EF-hands, our data indicate that the first EF-hand triggers the conformational transition and is followed by the second one. We determine that there are two interaction networks which contribute to stabilize the closed and open states, respectively.
Calmodulin (CAM) is involved in the regulation of a variety of cellular signaling pathways. To accomplish its physiological functions, CaM binds with Ca2+ at its EF-hand Ca2+ binding sites which induce the conformational switching of CaM. However, the molecular mechanism by which Ca2+ binds with CaM and induces conformational switching is still obscure. Here we combine molecular dynamics with targeted molecular dynamics simulation and achieve the state-transition pathway of CaM. Our data show that Ca2+ binding speeds up the conformational transition of CaM by weakening the interactions which stabilize the closed state. It spends about 6.5 ns and 5.25 ns for transition from closed state to open state for apo and holo CaM, respectively. Regarding the contribution of two EF-hands, our data indicate that the first EF-hand triggers the conformational transition and is followed by the second one. We determine that there are two interaction networks which contribute to stabilize the closed and open states, respectively.
基金
Supported by the Natural Science Fund for Distinguished Young Scholars of Hebei Province under Grant Nos C2015202340 and C2013202244
the Fund for Outstanding Talents of Hebei Province under Grant No C201400305
the National Natural Science Fund of China under Grant Nos 11247010,11175055,11475053,11347017,31600594,31400711 and 11647121
the Fund for the Science and Technology Program of Higher Education Institutions of Hebei Province under Grant No QN2016113
the Scientific Innovation Grant for Excellent Young Scientists of Hebei University of Technology under Grant No 2015010
the Natural Science Foundation of Hebei Province under Grant No C2017202208