期刊文献+

基于智能水滴算法优化Elman神经网络的光伏电站输出功率预测 被引量:27

OUTPUT POWER FORECAST OF PV PLANT BASED ON ELMAN NEURAL NETWORK OPTIMIZED BY INTELLIGENT WATER DROP ALGORITHM
原文传递
导出
摘要 提出一种智能水滴(intelligent water drops,IWD)算法优化Elman神经网络的光伏电站输出功率预测模型。利用智能水滴算法对Elman神经网络的权值和阈值进行优化,可提高网络的训练效率。将IWD优化Elman神经网络模型、传统Elman神经网络模型和BP神经网络模型的预测结果分别与光伏电站的实际出力数据进行对比。结果表明,所提出的IWD-Elman神经网络模型具有较高的预测精度。 The output power forecast model of PV plant based on Elman neural network optimized by intelligent water drop (IWD) algorithm was presented. The efficiency of network training could be improved by using IWD algorithm to optimize the weights and thresholds of Elman neural network. The prediction results of Elman neural network model optimized by IWD algorithm, traditional Elman neural network model and BP neural network model were compared with practical output power data of the PV plant, respectively. The results show that Elman neural network model optimized by IWD algorithm has higher forecast precision.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2017年第6期1553-1559,共7页 Acta Energiae Solaris Sinica
基金 国家自然科学基金(51407076) 河北省自然科学基金(F2014502050)
关键词 光伏电站 功率预测 智能水滴优化 ELMAN神经网络 PV plant power forecast intelligent water drops optimization Elman neural network
  • 相关文献

参考文献7

二级参考文献199

共引文献1303

同被引文献258

引证文献27

二级引证文献270

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部