摘要
Numerical analysis is an effective tool to research the industrial Czochralski (CZ) crystal growth aiming to improve crystal quality and reduce manufactur- ing costs. In this study, a set of global simulations were carried out to investigate the effect of crystal-crucible rotation and pulling rate on melt convection and solid- liquid (SL) interface shape. Through analyses of the sim- ulation data, it is found that the interface deformation and inherent stress increase during the crystal growth process. The interface deflection increases from 7.4 to 51.3 mm with an increase in crystal size from 150 to 400 mm. In addition, the SL interface shape and flow pattern are sen- sitive to pulling rate and rotation rate. Reducing pulling rate can flat SL interface shape and add energy-consuming. Interface with low deflection can be achieved by adopting certain combination of crystal and crucible rotation rates. The effect of crystal rotation on SL interface shape is less significant at higher crucible rotation rates.
Numerical analysis is an effective tool to research the industrial Czochralski (CZ) crystal growth aiming to improve crystal quality and reduce manufactur- ing costs. In this study, a set of global simulations were carried out to investigate the effect of crystal-crucible rotation and pulling rate on melt convection and solid- liquid (SL) interface shape. Through analyses of the sim- ulation data, it is found that the interface deformation and inherent stress increase during the crystal growth process. The interface deflection increases from 7.4 to 51.3 mm with an increase in crystal size from 150 to 400 mm. In addition, the SL interface shape and flow pattern are sen- sitive to pulling rate and rotation rate. Reducing pulling rate can flat SL interface shape and add energy-consuming. Interface with low deflection can be achieved by adopting certain combination of crystal and crucible rotation rates. The effect of crystal rotation on SL interface shape is less significant at higher crucible rotation rates.
基金
financially supported by the Major National Science and Technology Projects (No. 2009ZX02011)