期刊文献+

纹理对比度导向的图像自适应压缩感知测量方法 被引量:3

Texture Contrast Oriented Adaptive Measurement Method of Image Compressive Sensing
下载PDF
导出
摘要 压缩感知以部分随机变换代替全变换,仍可确保图像的高精度复原,可用于铁路系统中无线监控终端实现低复杂图像编码。传统图像压缩感知以相同的测量率实施分块测量,而由于分块稀疏度不同,常导致重建图像具有块效应,无法确保良好的率失真性能。为了解决该问题,本文提出利用图像纹理特征引导图像压缩感知,在感知端实施自适应测量。利用像素八连通区域内的最大梯度度量各像素的纹理变化程度,生成纹理特征图,利用纹理特征图计算各块纹理对比度,并以此为依据自适应设定各块的测量率,以块纹理对比度加权图像重建模型的目的函数,集中优化纹理细节的区域。实验结果表明,与由块方差、边缘特征主导的自适应测量方法相比,本文所提算法可确保较好的重建图像主观视觉质量,且率失真性能优于传统压缩感知重建算法。 Compressive sensing(CS)can reconstruct the image with a high accuracy by exploiting the partial random transformation instead of full transformation,which can be applied in the wireless monitor terminal of the rail system to realize the low-complexity encoding.The traditional image CS conducts block-wise measuring with the same measurement rate,causing some blocking artifacts of reconstructed image due to the different block sparsity,which results in a low rate-distortion(RD)performance.To solve the above problem,this paper proposed adaptively measuring each block depending on the texture features of image in the sensor.Firstly,the maximum gradient in the 8-connected region of each pixel was used to represent the corresponding texture variation,and these gradient values constructed the texture-feature map.Then,the texture contrast of each block was computed by using the texture-feature map,to adaptively set the measurement rate of each block according to the distribution of texture contrast.Finally,the objective function of image reconstruction model was weighted by the texture contrast to focus on the optimization of rich texture region.Experimental results showed that the proposed algorithm can guarantee the better subjective visual quality of the reconstructed image when compared with the adaptive measurement methods oriented with block variance and edge features,and the RD performance of the proposed algorithm outperformed that of the traditional CS reconstruction algorithm.
出处 《铁道学报》 EI CAS CSCD 北大核心 2017年第6期87-94,共8页 Journal of the China Railway Society
基金 国家自然科学基金(61501393)
关键词 图像压缩感知 自适应测量 纹理对比度 自适应全局重建 image compressive sensing adaptive measuring texture contrast adaptive global reconstruction
  • 相关文献

参考文献2

二级参考文献18

  • 1运基通信[2008]630号铁路综合视频监控系统技术规范(试行)[S].
  • 2赵海艳.无线视频监控系统在应急突发事件中的应用[J].中国公共安全,2007,0(12A):174-176. 被引量:3
  • 3CANDES E J. Compressive Sampling[C]//Proceedings of the International Congress of Mathematicians. New York: American Mathematical Society, 2006 : 1433-1452.
  • 4DONOHO D L. Compressive Sensing[J]. IEEE Transac- tions on Information Theory, 2006, 52(4): 1289-1306.
  • 5BARANIUK R. Compressive Sensing [J]. IEEE Signal Processing Magazine, 2007, 24(4):118- 121.
  • 6CANDES E, ROMBERG J, TAO T. Robust Uncertainty Principles: Exact Signal Reconstruction from Highly In complete Frequency Informalion[J]. IEEE Transactions on Information Theory, 2006, 52(2) :489-509.
  • 7CANDES E, ROMBERG J. Sparsity and Incoherence in Compressive Sampling[J]. Inverse Problems, 2007. 23 (3) : 969-985.
  • 8CHEN S B, DONOHO D L, SAUNDERS M A. Atomic Decomposition by Basis Pursuit[J]. SIAM Journal on Sci entitle Computing, 1998, 20(1) : 33 -61.
  • 9CANDES E, ROMBERG J, TAO T. Stable Signal Recov- ery from Incomplete and Inaccurate Measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207 -1223.
  • 10BAI Hui-hui, ZHAO Yun, I.IU Mei-qin, et al. Convex Programming in Image Corapression[J]. Journal of Com- putational Information Systems, 2011, 10(7): 3470-3477.

共引文献7

同被引文献37

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部