期刊文献+

一种基于手势识别的智能设备控制系统的设计 被引量:4

Design of an Intelligent Device Control System Based on Gesture Recognition
下载PDF
导出
摘要 提出一种能够通过识别人的手势动作进而对家电设备进行控制的系统,改进现有的智能家居控制方式。设计采用MPU6050姿态传感器采集并处理人体手部动作信号,结合低功耗蓝牙4.0模块实时将信号传送至STM32微处理器,然后STM32通过对获取信号的解析发送相应的命令控制家电设备的工作状态。经测试结果表明,系统运行稳定,实时性好,可靠性高,能够有效识别人体手部的动作,具有一定的实用性价值。 A system that can control the household appliances by recognizing the gesture of human is proposed, which improved the existing smart home Control method. This design uses the MPU6050 attitude sensor to acquisition and processing of human hand movements signal, combined with low power Bluetooth 4.0 module to real-time transmitted signal to the STM32 microprocessor, the STM32 then obtain signal analytical and send corresponding commands to control the household electrical appliance. The test results show that the system has stable operation, good real-time performance and high reliabili- ty. It can effectively identify the human hand movements,which has a certain practical value.
出处 《计算技术与自动化》 2017年第2期63-67,共5页 Computing Technology and Automation
基金 国家级大学生创新创业训练计划(201613902004)
关键词 手势识别 MPU6050传感器 蓝牙4.0 STM32 智能家居 gesture recognition MPU6050 sensor bluetooth 4.0 STM32 smart home
  • 相关文献

参考文献9

二级参考文献69

  • 1胡友树.手势识别技术综述[J].中国科技信息,2005(2):42-42. 被引量:27
  • 2Ying Wu, Thomas S. Huang. Vision-Based Gesture Recognition: A Review [M], Gesture-Based Communication in Human-Computer Interaction, 1999.
  • 3Perrin S, Cassinelli A, Ishikawa M. Gesture Recognition U- sing Laser-Based Tracking System [C]// IEEE Int. Conf. Automatic Face and Gesture Recognition, 2004. Proceedings. Sixth IEEE International Conference on, 2004:541-546.
  • 4Sturman D J, Zeltzer D. A Survey of Glove-Based Input [C]// IEEE Computer Graphics & Applications, 1994, 14 (1) : 30- 39.
  • 5Hossain M, Jenkin M. Recognizing Hand-Raising Gestures Using HMM [C]// Computer and Robot Vision, 2005: 405- 412.
  • 6Wang Xiying, Dai Guozhong. A Novel Method to Recognize Complex Dynamic Gesture by Combining HMM and FNN Models[C], Computational Intelligence in Image and Signal Processing, 2007: 13-18.
  • 7Parthasarathy G, Chatterji B N. A Class of New KNN Methods for Low Sample Problems[J], IEEE Trans. Sys. , Man and Cybern. 1990, 20(3) :715-718.
  • 8Hoffman F, Heyer P, Hommel G. Velocity Profile-based Recognition of Dynamic Gestures with Discrete Hidden Markov Models[C] //Proc. of 1997 Gesture Workshop. Gif-sur-Yvette, France: [s. n.] , 1997: 81-95.
  • 9Hinckley K, Pierce J, Sinclair M, et al. Sensing Techniques for Mobile Interaction[C] //Proc. of Conference on User Interface Software and Technology. San Diego, California, USA: [s. n.] , 2000: 91-100.
  • 10Chambers G S, Venkatesh S, West G, et al. Segmentation of Intentional Human Gestures for Sports Video Annotation[C] //Proc. of the 10th International Multimedia Modeling Conference. Brisbane, Australia: [s. n.] , 2004: 124-129.

共引文献119

同被引文献20

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部