摘要
用不同长度的圆形薄壁吸能管和不同质量的台车,采用有限元分析和台车试验进行拟合,获得FMVSS213规定的动态试验台车碰撞加速度波形。将所得的台车加速度波形和已有的ECE R44台车加速度波形,加载到放置有Q3儿童有限元模型的两种(汽车安全带和ISOFIX固定式)背带式前向儿童约束系统碰撞仿真模型中,通过仿真,分析了加速度波形对3岁儿童乘员的运动学响应和损伤参数的影响。结果显示,加载FMVSS213加速度波形的儿童乘员的前向运动学响应比加载ECE R44加速度波形约提前20ms。加载FMVSS213加速度波形的头部前向位移、HIC15和头部与胸部的加速度均大于ECE R44工况。两种工况的上颈部轴向力和胸部压缩量无显著差异,但上颈部轴向力均大于法规限值(1 705N),而胸部压缩量均小于法规限值(53mm)。研究结果表明,FMVSS213动态加载试验对儿童约束系统的安全性评价要求更高,可为儿童约束系统的设计提供参考依据。
Different lengths of thin-walled energy-absorbing round tube and different masses of sled are used to conduct a fitting with finite element analysis and sled test to obtain the sled crash acceleration waveform of dynamic test provisioned in FMVSS213 regulation. The acceleration waveform obtained and existing one with ECE R44 are applied to two crash simulation models for forward child restraint system (CRS) with Q3 child seatbelt and ISOFIX FE models incorporated respectively, and a simulation is performed to analyze the influences of acceleration waveform on the kinematic response and injury parameters of 3-year-old child occupant. The results show that the forward kinematic response of child occupant with FMVSS213 acceleration waveform is 20 ms earlier than that with ECE R44 one, and the head forward displacement, ffl"C,5 ,head acceleration and chest acceleration with FMVSS213 acceleration waveform are all larger than those with ECE R44 one. Upper neck axial force and chest deflection in both FMVSS213 and ECE R44 conditions have no apparent difference,but upper neck axial forces in both condi-tions all exceed regulation limit (1705 N) ,while chest deflections are all smaller than regulation limit (53mm). The results of study demonstrate that the FMVSS 213 dynamic loading test has higher requirements in safety evalua-tion of CRS,so can provide reference basis for CRS design.
出处
《汽车工程》
EI
CSCD
北大核心
2017年第6期661-666,共6页
Automotive Engineering
基金
国家自然科学青年基金(31300784)
福建省自然科学基金面上项目(2016J01748)
2015年"福建省高校杰出青年科研人才培育计划"
国家外专局高端外国专家团队项目(GDT20143600027)资助
关键词
儿童约束系统
薄壁圆管
加速度波形
损伤风险
child restraint system
thin-walled round tube
acceleration waveform
injury risk