期刊文献+

基于客流需求的城际列车时刻表模型改进研究 被引量:12

Improved Dynamic Demand Oriented Timetabling Model for Intercity Railway
下载PDF
导出
摘要 列车时刻表的编制是铁路旅客运输组织的关键问题,如何优化时刻表,最大限度缩短旅客的旅行时间,具有重要的理论和现实意义.然而,既有基于客流需求的时刻表优化模型大多数假设列车顺序固定或不允许列车间任意越行,离实际尚有一定差距.针对这一问题,本文以最小化旅客在站等待时间和在车旅行时间的线性加权为优化目标,综合考虑列车停站、区间运行、安全间隔、列车容纳能力等约束,在定序无越行和定序有限越行模型的基础上,构建了更一般的非定序任意越行混合整数二次规划模型,并利用ILOG CPLEX分别进行求解.最后,以某城际高铁为例进行案例研究.结果表明,本文所提的非定序任意越行模型求解质量最好,且能有效减少旅客全程旅行时间,具有可行性. Train timetabling is crucial for passenger railway operation. Train timetable optimization by minimizing the passerger travel time plays an important role in both theoretical and practice. Current research assumes that train sequence is fixed or no overtaking exists between trains, which is ideal. In order to solve this problem, this paper proposes a novel mix integer quadratic programming timetabling model which does not fix the train order and allow trains to overtake each other. The model takes the dwell time,running time, safety interval, overtaking and capacity as constraints, with an objective of minimizing the weight sum of passengers' waiting time and in-vehicle time. The new model is based on two basic models,the first model fixes the train order and do not allow the train to overtake each other. The second fixes the train order, but only adjacent trains are allowed overtake. Based on these models, a more generalized unset sequence overtaking timetabling model is proposed. The model is solved by ILOG CPLEX, and the results based on the Shanghai-Hangzhou intercity high-speed railway data show that the proposed model obtains the best solution. It can effectively reduce the total travel time for passengers, and is practical to use.
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2017年第3期157-164,共8页 Journal of Transportation Systems Engineering and Information Technology
基金 国家自然科学基金(U1434207) 教育部基本科研业务(2016JBM030) 北京市科委项目(Z151100001315004)~~
关键词 铁路运输 列车时刻表模型 混合整数二次规划模型 城际高速铁路 客流需求 railway transportation train timetabling model mixed integer quadratic model intercity high-speed railway passenger demand
  • 相关文献

参考文献1

二级参考文献8

  • 1ODIJK M A A. Constraint Generation Algorithm for the Construction of Periodic Railway Timetables[J]. Transpor- tation Research: Part B, 1996, 30 (6):455-464.
  • 2GOVERDE R M P. Railway Timetable Stability Analysis Using Max-Plus System Theory [J]. Transportation Re- search: Part B, 2007, 41 (2): 179-201.
  • 3WONG C W, YUEN W Y, FUNG K W, et al. Optimizing Timetable Synchronization for Rail Mass Transit [J]. Transportation Science, 2008, 42 (1): 57-69.
  • 4GEN M, CHENG R W. Genetic Algorithms and Engineering Optimization [M]. New York: Wiley-Interscienee, 2000.
  • 5ZHOU X, ZHONG M. Single-Track Train Timetabling with Guaranteed Optimality: Branch-and-Bound Algorithms with Enhanced Lower Bounds[J]. Transportation Research.. Part B, 2007, 41 (3)7 320-341.
  • 6BUSSIECK M, KREUZER P, ZIMMERMANN U. Optimal Lines for Railway System [J]. European Journal of Operational Research, 1997, 96 (1): 54-63.
  • 7LIEBCHEN C. The First Optimized Railway Timetable in Practice [J]. Transportation Science, 2008, 42 (4) : 420-435.
  • 8牛惠民.双向编组站列车调度调整的优化模型及算法[J].中国铁道科学,2007,28(6):102-108. 被引量:15

共引文献52

同被引文献73

引证文献12

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部