期刊文献+

基于复杂网络的癫痫脑电分类与分析 被引量:1

Classification and analysis of epileptic EEG based on complex networks
原文传递
导出
摘要 为提取癫痫发作与间歇期脑电信号的特征,提出利用构建癫痫EEG(electroencephalogram)网络的方法来刻画脑电信号。研究各变量均可测情况下的Lorenz和R9ssler混沌系统,利用其各变量的输出混沌时间序列构建复杂网络,发现构建的复杂网络拓扑图与其混沌吸引子存在形态相似性,说明由时间序列构建的复杂网络能刻画其原信号特征。对于多维系统中仅有一维可测时,多维时间序列由相空间重构得到。利用相空间重构方法对癫痫发作和间歇期脑电信号构建复杂网络进行分析。研究结果表明,癫痫发作时其网络拓扑较间歇期存在明显不同,且其平均路径长度显著增加,而递归率及其波动范围都显著降低,这些网络特性可以用来刻画脑电信号的特征,从而为癫痫疾病的自动辨识与预测提供基础。 To extract epileptic EEG features in the ictal and interictal period, a method of depicting epileptic EEG was proposed by transforming epileptic EEG time series to epileptic networks. Chaotic multi-dimensional time series coming from the Lorenz system and Rtissler system were used to construct a complex network, in which all the variables could be measured. It was found that there was morphological similarity between topology of the complex networks and the at- tractor of chaotic system. This indicated that complex networks constructed from time series could depict the characteris- tics of the original signals. For only one measureable variable, multi-dimensional time series were obtained by recon- struction of the phase space. Therefore, the epileptic EEG network was constructed and analyzed in the ictal and interic- tal period. The results showed that epileptic EEG network topologies in the ictal period were significantly different from that in the interictal period. Meanwhile, the average path length of the network increased significantly and recurrence rates decreased significantly in the ictal period comparing to in the interictal period. These network features could be used to depict the characteristics of EEG time series and could provide the basis for epilepsy automatic identification and prediction.
作者 郝崇清 王志宏 HAO Chongqing WANG Zhihong(School of Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, China School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China)
出处 《山东大学学报(工学版)》 CAS 北大核心 2017年第3期8-15,共8页 Journal of Shandong University(Engineering Science)
基金 河北省自然科学基金资助项目(F2014208013)
关键词 复杂网络 癫痫脑电 网络拓扑 形态相似性 平均路径长度 递归率 complex networks epileptic EEG network topology morphological similarity average path length re- currence rates
  • 相关文献

参考文献8

二级参考文献139

  • 1张振,杜守洪,陈子怡,田翔华,周毅,张洋.近似熵与SVM在自动分类癫痫脑电信号中的应用[J].生物医学工程研究,2013,32(2):74-79. 被引量:4
  • 2S.Boccaletti,V.Latora,Y.Moreno,M.Chavezf,D.-U.Hwang,方爱丽,赵继军.复杂网络:结构和动力学[J].复杂系统与复杂性科学,2007,4(1):49-92. 被引量:7
  • 3Gerstner W and Kistler W M 2002 Spiking Neuron Models: Single Neurons, Populations, Plasticity (Cambridge: Cambridge University Press)
  • 4Sporns O, Tononi G and Edelman G M 2000 Cereb Cortex 10 127
  • 5Stephan K E, Hilgetag C C, Burns G A P C, O'Neill M A, Young M P and KOtter R 2000 Philos. Trans. R. Soc. Lond. B 355 111
  • 6Lago-Fernandez L F, Huerta R, Corbacho F and Siguenza J A 2000 Phys. Rev. Lett. 84 2758
  • 7Kwon O and Moon H T 2002 Phys. Lett. A 298 319
  • 8Roxin A, Riecke H and Solla S A 2004 Phys. Rev. Lett. 92 198101
  • 9Perc M 2007 Chaos, Solitons and Fractals 31 280
  • 10Xiao Y Z and Xu W 2007 Chin. Phys. 16 1597

共引文献42

同被引文献13

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部