摘要
设q为无平方因子的正奇数,q的任意素因子qi(i∈Z^+)都满足qi≡5(mod 8),主要利用同余的性质、Legendre符号等证明了y^2=qx(x^3-32)除了整数点(x,y)=(0,0)外至多有4个整数点(x_1,±y_1),(x_2,±y_2).
Abstract: Let q be a positive odd number,which has no square factors , and prime factors qi(i∈Z ) satisfies q = 5(mod 8). It was proved that y2 =qx ( x^2 - 32) has 4 integer points (r 1 ,± y 1 ), (r 2 ,± y 2 ) atmostwith (r,y )= (0, 0) by using some properties of congruence,Legendre symbols.
出处
《岭南师范学院学报》
2017年第3期8-12,共5页
Journal of Lingnan Normal University
基金
云南省科技厅应用基础研究计划青年项目(2013FD061)