期刊文献+

某型组合发动机舱元组件热防护设计与分析 被引量:6

Preliminary study on thermal-protection of components in X-combined engine cabin
原文传递
导出
摘要 发动机舱元组件热防护设计与分析是某型组合循环发动机的关键技术之一。首先提出元组件防热布置方案,同时辅以冷却空气主动热防护,根据某型组合发动机空油换热器实际情况,设置不同冷气质量流量,对某型组合发动机舱内喷口油源泵、燃油分布器、增压泵、燃油泵、喷口控制装置、作动筒进行热防护设计。在此基础上,运用商用软件FLUENT,进行了发动机舱及其元组件气动热力性能数值模拟研究。考虑辐射换热,研究冷却空气流量对舱内各元组件表面温度分布的影响。结果表明,辐射换热对发动机舱内各元组件表面温度分布影响很大;冷却空气能有效降低元组件壁面整体温度水平,但对壁面最高温度的降低效果有限,在通入最大冷气流量时,各元组件壁面最高温度降低了2%~8%,但仍远超工作要求;在当前的结构布置下,仅在发动机舱内通入有限流量冷却空气方案并不能够满足元组件的热防护需求,需要对发动机舱采取进一步的热防护措施。 Design and analysis on the thermal-protection of components in engine cabin is one of the key technologies of X-combined circulation engine.The assignment program of components in the engine cabinincluding nozzle oil sources pump,fuel distributor,booster pump,fuel pump,nozzle controller,and actuatorwere firstly presented.Then,according to the actual situation of the air-oil heat exchanger,different air mass flow rates were designed.By using commercial software,Fluent,numerical simulation study on the aerodynamic and thermal performance of the engine cabin and its components was carried out.Radiation heat transfer involved,the effect of the cooling air flux on the surface temperature distribution of the components was studied.It is shown that radiation heat transfer has great influence on the wall temperature distribution of the components in the engine cabin.Cooling air can effectively reduce the overall wall temperature of the components,but it reduces the maximum wall temperature of the components limited,which was reduced by 2%-8% and still far exceeded the working requirement when the air mass flow rate was up to 5qm0kg/s;Current cooling project,in which finite cooling air is employed,cannot satisfy the thermal protection requirement of the components.Further thermal protection methods are needed for this combined engine cabin.
出处 《热科学与技术》 CAS CSCD 北大核心 2017年第3期193-200,共8页 Journal of Thermal Science and Technology
关键词 发动机舱 元组件 热防护 设计与分析 combined engine cabin component thermal-protection design and analysis
  • 相关文献

参考文献2

二级参考文献16

  • 1[1]U Hueter,C R.McClinton.NASA's advanced space transportation hypersonic program.AIAA-2002 -5175.
  • 2[2]R J Shaw,L W Koops,R Hines.Progress toward meeting the propulsion technology challenges for the high speed civil transport.ISABE 99 -7005.
  • 3[3]H Miyagi,et al.Combined cycle engine research in japanese HYPR program.AIAA-98-3278.
  • 4[4]P A Bartolotta,D G Shafer.High speed turbines:development of a turbine accelerator (RTA) for space access.AIAA 2003-6943.
  • 5[5]D G Shafer,N B Manelis.Development of a ground based mach 4 + revolutionary turbine accelerator technolgy demonstrator.ISABE 2003-1125.
  • 6[6]W J D Escher.A U.S.history of airbreathing/rocket combined cycle (RBCC) propulsion for powering future aerospace transports,with a look ahead to the year 2020.ISABE99-7028.
  • 7[8]J J Bertin,et al.A hypersonic attack platform:The S3 concept.August 1996,USAF Academy.
  • 8[1]陈宏.高超飞行器推进系统概念研究[D].西安:西北工业大学,2005.
  • 9[2]Wagner A,Bouchez M.Integration of a Combined Engine Propulsion System into a SSTO Launcher[R].AIAA-95-6044.
  • 10[3]Roche J M.Structural Sizing of A 250001b Payload Air Breathing Launch Vehicle for Single-Stage-To-Orbit.JANNF 25th airbreathing propulsion subcommittee[C].37th combustion subcommiUee and 1st modeling & simulation subcommittee joint meeting,vol(1).

共引文献36

同被引文献24

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部