摘要
本文利用直觉模糊集的思想对包含度的概念进行了推广,提出了直觉包含度、直觉包含度族的凸性,不交性等概念。给出了直觉包含度子族是凸的等价刻画及不交性的性质。另外,在直觉包含度族D上定义了偏序及两种运算"■"和"■",证明了(D,■,■,≤)是一个分配格。
In this paper, we use the ideas of intuitionistic fuzzy sets generalize the concept of inclusion degree. The concepts of intuitionistic inclusion degree, the convexity of the family of inclusion degree and disjointness are introduced. The equivalent characterizations that the subfamily of inclusion degree is convex are given. The properties of disjointness are also studied. In addition, the definitions of partial order and two kinds of operations "∧" and "∨" on the family of intuitionistic inclusion degree are promoted. We also prove that (D,∨,∧,≤) is a distributive lattice.
出处
《模糊系统与数学》
北大核心
2017年第3期27-36,共10页
Fuzzy Systems and Mathematics
基金
国家自然科学基金资助项目(61170121
11401259)
江苏省自然科学基金资助项目(BK20151117)
江苏省高等职业院校专业带头人高端研修项目(2016GRFX057)
无锡职业技术学院科研项目(ZK201606)
关键词
直觉包含度
凸性
不交性
偏序
格
Intuitionistic Inclusion Degree
Convexity
Disjointness
Partial Order
Lattice