期刊文献+

基于压缩感知的图像处理算法研究 被引量:2

Research on Image Processing Algorithm Based on Compressed Sensing
下载PDF
导出
摘要 在对图像数据进行识别和恢复的过程中,由于图像的相似性,存在数据的稀疏性。在压缩感知恢复图像的过程中,由于缺乏对统计数据先验信息的利用,导致计算复杂度高,并且恢复精度低。针对此问题,采用压缩感知的改进算法对图像进行恢复,对矩阵的相似性和相似距离进行定义,根据定义应用主成分分析映射以及贝叶斯先验信息对图像的迭代恢复算法进行改进。实验结果显示,所提方法的准确性明显高于其他恢复算法,并且恢复的图像清晰度高。根据计算复杂度的对比,所提算法的计算复杂度低,计算时间少。 In the process of recognizing and restoring image data,data's sparsity usually occurs due to the similarity of images.In the process of compressed sensing image restoration,the lack of prior information on statistical data generally brings about higher computational complexity and lower restoring accuracy.This paper introduced a refined algorithm of compressed sensing to restore the images,and it defined similarity distances of the matrix as well.The similarity distances and similarity of the matrix are defined by the similarity of the image.Based on the present definition,the application of principal component analysis mapping and Bayesian prior information will enhance images' iterative recovery algorithm.Experimental results show that the proposed method is more accurate than other restoration algorithms and the images restored are of better definition.Comparatively speaking,the proposed algorithm has a lower computational complexity and consumes a shorter period of computational time.
作者 陆钊 朱晓姝
出处 《计算机科学》 CSCD 北大核心 2017年第6期312-316,共5页 Computer Science
基金 广西高校科学技术研究项目(KY2015LX300 KY2015YB241 2013LX112) 玉林市科技创业成果转化专项经费项目(16022009)资助
关键词 压缩感知 主成分映射 图像恢复 计算复杂度 Compressed sensing Principal component mapping Image restoration Computational complexity
  • 相关文献

参考文献5

二级参考文献62

  • 1鲍程辉,贺新光,蒋卫国.非下采样Contourlet变换和脉冲耦合神经网络相结合的遥感图像融合方法[J].遥感信息,2015,30(2):50-56. 被引量:5
  • 2杨育彬,陈世福,林珲.一种基于颜色连通的图像纹理检索新方法[J].电子学报,2005,33(1):57-62. 被引量:16
  • 3胡朝芬,黄之杰,罗来华.医学图像融合技术研究进展[J].医疗卫生设备,2010,31(4):157-160.
  • 4DO M N,VETTERLI M.Contourlets[C]//Beyond Wavelets.[S.l.]:[s.n.],2002:1-27.
  • 5ARTHUR L C,ZHOU J P,DO M N.The nonsubsampled contourlet transform:Theory,design,and applications [J].IEEE Trans Image Processing,2006,15(10):3089-3101.
  • 6CHAI YI,LI HUAFENG,U ZHAOFEL Multifocus image fusion scheme using focused region detection and multi- resolution[J].Optics Communications,2011,284(19):14-16.
  • 7STILLER C,Le6n PUENTE F,KRUSE M.Information fu- sion for automotive applications-Anoverview[J].Infor- mation Fusion,2011,12(4):244-252.
  • 8ZHANG QIANG,GUO BAO-LONG.Multifocus image fu- sion using the nonsubsampled Contourlet transform[J]. Signal Processing(S0165-1684),2009,89(7):1334-1346.
  • 9CUNHA A L,ZHOU J P,D0 M N.The non-subsampled contourlet transform:theory,design and applications[J]. IEEE Trans on Image Processing,2006,15(10):3089-3101.
  • 10LI X,QIN S Y.Efficient fusion for infrared and visible- imagesbased oncompressive sensing principle[J].IET Im- age Processing,2011,5(2):141-14.

共引文献32

同被引文献21

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部