期刊文献+

单变量独立同分布水文事件重现期的计算原理与方法 被引量:3

Research on the Calculation Principle and Method of the Return Period of Univariate Independent and Identically Distributed Hydrological Event
下载PDF
导出
摘要 研究了单变量独立同分布水文事件的重现期的计算原理与方法。根据事件首次发生的期望等待试验次数与连续两次事件间期望间隔试验次数的两种重现期定义,采用数学期望值和概率母函数法,系统地推导了独立同分布水文事件重现期的计算公式。结果表明,单变量独立同分布水文事件在两种定义下的重现期相等。所得计算公式具有严格的数学基础,以期为我国现行水文频率的计算提供理论支撑。 The calculation principle and method of the return period of univariate and independent identically distributed hydrological event are presented. Based on two definitions of return period (the first occurrence expected waiting trials and expected interarrival trials between two consecutive events), used mathematical expectation and probability generating function, the return periods calculation formula of independent identically distributed event are derivated. The resuhs show that the two definitions of return period have the same expression. These expressions have solid mathematical basis, and are expected to provide the theoretical bases for hydrological frequency analysis in China.
出处 《华北水利水电大学学报(自然科学版)》 2017年第4期43-46,共4页 Journal of North China University of Water Resources and Electric Power:Natural Science Edition
基金 国家自然科学基金项目(51479171 51579095 51179160)
关键词 水文事件 重现期 单变量 独立同分布 hydrological event return period univariate event independent and identically distribution
  • 相关文献

参考文献2

二级参考文献28

  • 1谢平,陈广才,夏军.变化环境下非一致性年径流序列的水文频率计算原理[J].武汉大学学报(工学版),2005,38(6):6-9. 被引量:114
  • 2詹道江.工程水文学[M].北京:中国水利水电出版社,2010.
  • 3Milly P C D, Julio B, Malin F, et al. Stationarity is dead: Whither water management? [J]. Science, 2007, 319(5863): 573-574.
  • 4Khaliq M N, Ouarda T, Ondo J, et al. Frequency analysis of a sequence of dependent and/or non-stationary hydrometeorological observations: A review [J]. Journal of Hydrology, 2006, 329(3): 534-552.
  • 5Waylen P, Woo M generated by mixed Research, 1982, 18(4): K. Prediction of annual floods processes [J]. Water Resources 1283-1286.
  • 6Strupczewski W G, Singh V P, Feluch W. Non-stationary approach to at-site flood frequency modelling I. Maximum likelihood estimation [J]. Journal of Hydrology, 2001, 248(1):123-142.
  • 7Strupczewski W G, Kaczrnarek Z. Non-stationary approach to at-site flood frequency modelling Ⅱ. Weighted least squares estimation [J]. Journal of Hydrology, 2001, 248(1): 143-151.
  • 8Strupczewski W G, Singh V P, Mitosek H T. Non- stationary approach to at-site flood frequency modelling. Ⅲ. Flood analysis of Polish rivers [J]. Journal of Hydrology, 2001, 248(1): 152-167.
  • 9Singh V P, Wang S X, Zhang L. Frequency analysis of non-identically distributed hydrologic flood data [J]. Journal of Hydrology, 2005, 307(1): 175-195.
  • 10Jiang C, Xiong L, Xu C Y, et al. Bivariate frequency analysis of nonstationary low-flow series based on the time-varying copula [J]. Hydrological Processes, 2015, 29(6): 1521-1534.

共引文献5

同被引文献28

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部