期刊文献+

智能信息处理技术在网络计算中的应用 被引量:6

Application of intelligent information processing technology in network computing
下载PDF
导出
摘要 为了提高网络大数据计算的速度和收敛性,针对当前仿生群算法容易出现局部收敛的问题,提出一种基于优化粒子群智能信息处理的网络大数据计算方法。采用特征尺度标识方法进行网络计算数据集规范化处理,结合粒子群算法进行网络计算的大数据聚类分析,根据粒子速度和位置更新迭代公式确定初始聚类中心,通过混沌差分扰动进行个体寻优,降低群体适应度方差,使得计算程序满足收敛法则,提高网络计算的效率。仿真结果表明,采用该方法进行网络大数据的智能计算能得到最优适应度值,收敛性和处理速度都具有优势。 In order to improve the speed and convergence of the network big data calculation, and solve the problem that the bionic swarm algorithm is prone to appear the local convergence, a network big data computing method based on optimized particle swarm intelligent information processing is put forward. The characteristic scale identification method is used to perform the dataset standardization processing of network computing, and combined with the particle swarm algorithm to conduct the big data clustering analysis of network computing. According to the update iterative formula of the particle velocity and position, the initial clustering center is determined. The individual is optimized by means of chaotic difference disturbance to reduce the fitness variance of population, which makes that the calculation program can meet the convergence rule, and the efficiency of network computing improved. The simulation results show that the method can obtain the optimal fitness value, fast convergence and processing speed while performing the intelligent computing of the network big data.
作者 李天峰
出处 《现代电子技术》 北大核心 2017年第15期41-43,共3页 Modern Electronics Technique
关键词 智能信息处理 粒子群 网络计算 大数据 intelligent information processing particle swarm network computing big data
  • 相关文献

参考文献5

二级参考文献49

  • 1陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 2江梅.SciFinder Scholar数据库与CA on CD数据库比较[J].现代情报,2006,26(3):83-86. 被引量:5
  • 3Kennedy J, Eberhart R C. Particle swarm opti- mization. Proceedings of IEEE International Conference on Neural Networks, 1995, 4: 1942-1948.
  • 4Eberhart R C, Kennedy J. A new optimizer u- sing particle swarm theory. Proceedings of 6^th International Symposium on Micro Machine and Human Science, 1995,39-43.
  • 5Zhan Z H,Zhang J,Li Y,et al. Adaptive parti- cle swarm optimization. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cyber netics,2009,39(6) : 1362-1381.
  • 6Zhan Z H, Zhang J, Li Y, et al. Orthogonal learning particle swarm optimization. IEEE Transactions on Evolutionary Computation, 2011 ,in press.
  • 7Shi Y,Eberhart R C. A modified particle swarm optimization. Proceedings of the IEEE Congress on Evolutionary Computation, 1998,303 -308.
  • 8Han J W,Kamber M.数据挖掘:概念与技术[M].范明,孟小峰,译.2版.北京:机械工业出版社,2007:251-301.
  • 9JAGRAW R, SRIKANT R. Fast algorithms for mining association rules [ C]// Proceedings of the 20th International Conference on Very Large Data Bases. San Francisco, CA: Morgan Kaufmann, 1994:487-499.
  • 10ZIHAYAT M, AN A. Mining top-k high utility patterns over data streams [J]. Information Sciences, 2014, 285:138-161.

共引文献68

同被引文献14

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部