期刊文献+

一种计算有效的Nystrom特征子空间匹配主用户频谱感知新算法 被引量:2

A New Computationally Efficient Nystrom Feature Subspace Matching Algorithm for the Primary User Spectrum Sensing
下载PDF
导出
摘要 针对核(kernel)空间下主用户频谱感知算法存在的计算任务繁重这一共性问题,提出一种低计算复杂度的Nystrom特征子空间匹配(NSM)新算法.该算法依据数据样本维的独立同分布特性随机地选择数据子集.在高维核空间下应用Nystrom近似获得主特征向量,用以分别构建主用户特征信号与次用户接收信号的Nystrom特征子空间.以此为基础计算相应的Frobenius距离,实现主用户检测.计算机仿真结果表明:与代表性的核空间下主用户频谱感知算法相比,所提算法在保证检测性能较为理想的前提下,可将相应的计算复杂度降低近66%. Considering the high computational burden of the previous kernel spectrum sensing methods,this paper proposes a computationally more efficient Nystrom subspace matching( NSM) algorithm. Based on the independent identically distributed observations,the subset is randomly chosen to implement the Nystrom approximation and reconstruct the related kernel features in a high-dimensional Euclidean space. Then,the related Nystrom subspaces respectively for the primary users and the secondary users are modified,and the Frobenius range between these two subspaces can be computed to determine whether the primary users exist or not. Compared to the previous kernel subspace matching methods,the novel version reduces the computational complexity by 66% while provides almost the same detection performance. Computer simulations are conducted to evaluate the performance of the proposed algorithm.
出处 《电子学报》 EI CAS CSCD 北大核心 2017年第7期1553-1558,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.61171137) 国家重点研发计划(No.2016YFB1001304)
关键词 频谱感知 核空间 Nystrom近似 特征子空间匹配 spectrum sensing kernel space nystrom approximation feature subspace matching
  • 相关文献

参考文献5

二级参考文献58

  • 1Zhao Q,Sadler B M.A survey of dynamic spectrum access[J].IEEE Signal Processing Magazine,2007,24(3):79-89.
  • 2Shen B,Ullah S,Kwak K.Deflection coefficient maximization criterion based optimal cooperative spectrum sensing[J].AEU -International Journal of Electronics and Communications,2010,64(9):819-827.
  • 3Li Z,Yu F R,Huang M.A cooperative spectrum sensing consensus scheme in cognitive radios .INFOCOM .Leblon:IEEE,2009.2546-2550.
  • 4Chen R,Park J,Bian K.Robust distributed spectrum sensing in cognitive radio networks .INFOCOM .Phoenix:IEEE,2008.31-35.
  • 5Li H,Han Z.Catching attacker(s):for collaborative spectrum sensing in cognitive radio systems:an abnormality detection approach .DySPAN .Singapore:IEEE,2010.1-12.
  • 6Yu F R,Tang H,Huang M,et al.Defense against spectrum sensing data falsification attacks in mobile ad hoc networks with cognitive radios .MILCOM .Boston:IEEE,2009.1-7.
  • 7Lin X,Boyd S,Lall S.A scheme for robust distributed sensor fusion based on average consensus .4th IPSN .Los Angeles:IEEE,2005.63-70.
  • 8Urkowitz H.Energy detection of unknown deterministic signals[J].Proceedings of the IEEE,1967,55(4):523-531.
  • 9Ren W,Beard R W.Consensus seeking in multiagent systems under dynamically changing interaction topologies[J].IEEE Trans on Automatic Control,2005:655-661.
  • 10Digham F F,Alouini M,Simon M K.On the energy detection of unknown signals over fading channels .ICC .Alaska:IEEE,2003.3575-3579.

共引文献39

同被引文献2

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部