期刊文献+

Additive Preservers of Drazin Invertible Operators with Bounded Index 被引量:1

Additive Preservers of Drazin Invertible Operators with Bounded Index
原文传递
导出
摘要 Let B(X) be the algebra of all bounded linear operators on an infinite-dimensional complex or real Banach space X. Given an integer n 〉 1, we show that an additive surjective map Ф on B(X) preserves Drazin invertible operators of index non-greater than n in both directions if and only if Ф is either of the form Ф(T) = aATA-1 or of the form Ф(T) = aBT*B-1 where a is a non-zero scalar, A : X → X and B : X* → X are two bounded invertible linear or conjugate linear operators. Let B(X) be the algebra of all bounded linear operators on an infinite-dimensional complex or real Banach space X. Given an integer n 〉 1, we show that an additive surjective map Ф on B(X) preserves Drazin invertible operators of index non-greater than n in both directions if and only if Ф is either of the form Ф(T) = aATA-1 or of the form Ф(T) = aBT*B-1 where a is a non-zero scalar, A : X → X and B : X* → X are two bounded invertible linear or conjugate linear operators.
机构地区 Departement Math-Info
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2017年第9期1225-1241,共17页 数学学报(英文版)
关键词 Linear preserver problems Drazin inverse ASCENT DESCENT Linear preserver problems, Drazin inverse, ascent, descent
  • 相关文献

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部