期刊文献+

相转化法制备聚苯醚基锂电隔膜及其性能研究 被引量:1

Preparation and performance of polyphenylene oxide-based separator by phase inversion method for lithium-ion battery
原文传递
导出
摘要 为了改善锂电隔膜的亲液性和耐热性,本研究采用聚苯醚树脂为成膜材料,利用相转化法制备了微孔锂电隔膜,通过膜形貌和结构表征、亲液性和耐热性测试对聚苯醚隔膜的基本性能进行研究,并将该隔膜装配成锂电池进行电化学性能表征。结果表明,聚苯醚隔膜显示出发达的三维孔道结构,孔隙率达到68%,约为传统聚烯烃膜的1.5倍;材料的良好亲液性和高孔隙率结构改善了聚苯醚隔膜的吸液性,其吸液率达到325%;该隔膜在160℃、60min的热处理条件下未发生明显的热收缩。相对于市售聚乙烯隔膜,聚苯醚微孔隔膜所装配锂离子电池显示出更优的循环性能和倍率性能。 To enhance the electrolyte wettability and thermal resistance of separator for lithium-ion battery,polyphenylene oxide( PPO) resin was used to fabricate microporous separator by phase inversion method and investigated in lithium-ion batteries.Systematical investigations including morphology characterization,microstructure,contact angle testing,electrolyte wettability,thermal resistance testing and electrochemistry performance were carried out. The results demonstrated that PPO-based separator showed three-dimensional microporous structure with the porosity up to 68%,which was 1. 5 times higher than that of the conventional polyolefin separator. Based on the electrolyte wettable surface and well-defined microstructure,this separator exhibited superior electrolyte uptake of 325%. This separator displayed almost no thermal shrinkage at 160℃ for 60 min. Owing to the above advantages,PPO-based separator showed better electrochemical performances,such as the discharge C-rate capability and cycling performance.
出处 《化工新型材料》 CAS CSCD 北大核心 2017年第7期114-116,119,共4页 New Chemical Materials
基金 国家自然科学基金(21376035)
关键词 隔膜 相转化法 聚苯醚 亲液性 耐热性 电化学性能 separator phase inversion method polyphenylene oxide wettability thermal resistance electrochemistry performance
  • 相关文献

参考文献2

二级参考文献72

  • 1吴大勇,刘昌炎.锂离子电池隔膜研究进展[J].新材料产业,2006(9):48-53. 被引量:15
  • 2Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603.
  • 3Tarascon J M, Annand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(686 l): 359-367.
  • 4Song J Y, Wang Y Y, Wan C C. Review of gel-type polymer electrolytes for lithium-ion batteries[J]. Journal of Power Sources, 1999, 77(2): 183-197.
  • 5Moshtev R, Johnson B. State of the art of commercial Li ion batteries[J]. Journal of Power Sources, 2000, 91 (2): 86-91.
  • 6Travas-Sejdic J, Steiner R, Desilvestro J, et al. Ion conduc- tivity of novel polyelectrolyte gels for secondary lithi- um-ion polymer batteries[J]. Electrochimica Acta, 2001,46(10): 1461-1466.
  • 7Ohsaki T, Kishi T, Kuboki T, et al. Overcharge reaction of lithium-ion batteries[J]. Journal of Power Sources, 2005, 146(1/2): 97-100.
  • 8Zhang Z, Fouchard D, Rea J R. Differential scanning calorimetry material studies implications for the safety of lithium-ion cells[J]. Journal of Power Sources, 1998, 70(1): 16-20.
  • 9Yamaki J I, Baba Y, Katayama N, et al. Thermal stability of electrolytes with Li~CoO2 cathode or lithiated carbon anode [J]. Journal of Power Sources, 2003, 119 (SI):789-793.
  • 10Baba Y, Okada S, Yamaki J. Thermal stability of LixCoOz cathode for lithium ion battery[J]. Solid State Ionics, 2002, 148(3/4): 311-316.

共引文献45

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部