期刊文献+

基于视觉显著性的太阳能电池片表面缺陷检测 被引量:43

Solar cell surface defect detection based on visual saliency
下载PDF
导出
摘要 现有基于机器视觉的太阳能电池片表面缺陷检测算法均是采用各种类型的数学模型来进行算法设计,为进一步提高检测准确率,从人眼仿生学角度出发,首次将人眼的视觉注意机制引入到太阳能电池片表面缺陷检测中,提出了一种基于视觉显著性的太阳能电池片表面缺陷检测算法。首先,对输入的太阳能电池片表面图像进行预处理,去除对检测有影响的噪声和栅线;其次,提出一种基于自学习特征的视觉显著性检测算法来大致定位缺陷区域;随后,提出一种视觉显著性和超像素分割相结合的算法来进一步精确定位缺陷区域;最后,通过形态学后处理得到最终检测结果。在包含多种缺陷类型的测试图像库上的主观和客观实验评估表明,该算法具有较高的检测准确率。 The existing solar cell surface defect detection algorithms based on machine vision are all designed to use various types of mathematical models to carry out the algorithm design. In order to further improve the detection accuracy, inspired by human vision bionics, the human visual attention mechanism is firstly introduced in the solar cell surface defect detection, and a solar cell surface defect detection algorithm based on visual saliency is proposed in this paper. First of all, the acquired solar cell surface image is preprocessed to remove the noise and grids that influence the defect detection. Secondly, a visual saliency detection algorithm based on self-learning features is put forward to roughly locate the defect region. Then, an algorithm that combines the visual saliency and superpixel segmentation is proposed to precisely locate the defect region. At last, the final detection result is obtained using morphological post-processing. The subjective and objective experiment evaluations on a test image database containing various types of defects demonstrate that the proposed algorithm has high detection accuracy.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2017年第7期1570-1578,共9页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61501407 61503173) 河南省高等学校重点科研项目(15A413006) 河南省重大科技专项(161100211600) 河南省科技厅科技攻关项目(162102210060 172102210062) 郑州轻工业学院博士基金(2014BSJJ016 2016BSJJ006 2016BSJJ002) 郑州轻工业学院研究生科技创新基金(2016026)项目资助
关键词 太阳能电池 表面缺陷检测 视觉显著性 自学习特征 超像素 solar cell surface defect detection visual saliency self-learning feature superpixel
  • 相关文献

参考文献7

二级参考文献105

  • 1刘焕军,王耀南,段峰.空瓶的智能检测算法研究[J].湖南大学学报(自然科学版),2005,32(1):20-24. 被引量:3
  • 2刘焕军,王耀南,段峰.基于支撑向量机的空瓶智能检测方法[J].控制与决策,2005,20(12):1434-1437. 被引量:10
  • 3全厚德,闫守成,张洪才.计算机视觉中摄像机标定精度评估方法[J].测绘科学技术学报,2006,23(3):222-224. 被引量:15
  • 4李小鹏,严严,章毓晋.若干背景建模方法的分析和比较[C].第十三届全国图象图形学学术会议,2006:482-486.
  • 5Tsai Du-Ming,Wu Shih-Chieh,Li Wei-Chen.Defect detection of solar cells in electroluminescence images using Fourier image reconstruction.Solar Energy Materials and Solar Cells,2012,99:250-262.
  • 6Tsai Du-Ming,Chang Chih-Chieh,Chao Shin-Min.Microcrack inspection in heterogeneously textured solar wafers using anisotropic diffusion.Image and Vision Computing,2010,28(3):491-501.
  • 7Chiou Yih-Chih,Liu Jian-Zong,Liang Yu-Teng.Micro crack detection of multi-crystalline silicon solar wafer using machine vision techniques.Sensor Review,2011,31 (2):154-165.
  • 8Fu Zhuang,Zhao Yang-Zheng,Liu Yang,et al.Solar cell crack inspection by image processing//Proceedings of the International Conference on Business of Electronic Product Reliability and Liability.Shanghai,China,2004:77-80.
  • 9Tsai Du-Ming,Luo Jie-Yu.Mean shift-based defect detection in multicrystalline solar wafer surfaces.IEEE Transactions on Industrial Informatics,2011,7(1):125-135.
  • 10Jean Jong-Hann,Chen Chia-Hong,Lin Hsiu-Li.Application of an image processing software tool to crack inspection of crystalline silicon solar cells//Proceedings of the 2011 International Conference on Machine Learning and Cybernetics.Guilin,China,2011:1666-1671.

共引文献244

同被引文献408

引证文献43

二级引证文献345

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部