期刊文献+

一种SIFT虹膜匹配算法 被引量:4

A SIFT Iris Matching Algorithm
下载PDF
导出
摘要 尺度不变特征变换(scale invariant feature transform,SIFT)算法是目前图像研究领域的热点,它具有良好的尺度、旋转、光照、噪声等不变特性.在特征提取方法上,利用SIFT算法提取虹膜纹理的特征向量,由于提取出来的虹膜特征向量是128维,占用内存空间大,因此提出用Harris角点对初始特征点进行筛选,选择高对比度的点作为最终的虹膜特征向量;在匹配方法上,使用街区距离进行虹膜图像特征匹配,进一步提高虹膜图像匹配的速度.实验结果表明,改进的算法在保持鲁棒性的同时,提高了SIFT特征匹配效率,能够为一些快速应用提供保障. Scale invariant feature transform algorithm was a hot topic in the field of image research,because of its good scale,rotation,illumination,noise and other invariant features. In the feature extracting method,SIFT algorithm was used to extract the feature vector of iris texture,however the iris feature vector was 128 dimension,which occupied a large memory space. Therefore,it was proposed that the initial feature points were selected by the Harris corner points,and the point of high contrast were selected as the final iris feature vectors. In the matching method,the block distance was used to match the feature of iris image,which further improved the matching speed of iris image. The experimental results showed that the improved algorithm increased the SIFT feature matching efficiency while maintaining the robustness,and which could provided protection for some fast applications.
作者 张震 邵星星
出处 《郑州大学学报(理学版)》 CAS 北大核心 2017年第3期14-19,共6页 Journal of Zhengzhou University:Natural Science Edition
基金 河南省科技攻关项目(152102210032)
关键词 SIFT算法 HARRIS角点 特征提取 街区距离 SIFT algorithm Harris corner feature extraction block distance
  • 相关文献

参考文献5

二级参考文献32

  • 1李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:154
  • 2李寒,牛纪桢,郭禾.基于特征点的全自动无缝图像拼接方法[J].计算机工程与设计,2007,28(9):2083-2085. 被引量:52
  • 3章毓晋.图像处理(第2版).北京:清华大学出版社,2006.3.
  • 4Lowe D G. Distinctive image features from scale-invariant keypoints[J]. Internalional Journal of Computer Vision, 2004, 60(2) :91 -110.
  • 5Ke Y, Sukthankar R. PCA-SIFT: a more distinctive representation for local image descriptors [ A ]. Proceedings of Conference on Computer Vision and Pattern Recognition[ C], 2004.
  • 6骞森,朱剑英.基于改进的SIFT特征的图像双向匹配算法[J].机械科学与技术,2007,26(9):1179-1182. 被引量:44
  • 7Brown M, Lowe D G. Recognizing panoramas[C] ff Proceedings of the 9th International Conference onComputer Vision ( ICCV03). Nice, France.. IEEE, 2003 .. 1218 - 1225.
  • 8Lowe D G. Distinctive image features from scale- invariant keypoints [ J ]. International Journal of Computer Vision, 2004,60(2) : 91 - 110.
  • 9Jegou H, Harzallah H, Schmid C. A contextual dissimilarity measure for accurate and efficient image search[C] ffProceedings of the Conference on Computer Vision Pattern Recognition. Minneapolis, USA: Is. n.], 2007:1-8.
  • 10Zitova B, Flusser J. Image registration methods: a survey[J]. Image and Vision Computing, 2003, 21: 977 - 100.

共引文献92

同被引文献25

引证文献4

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部