摘要
研究时间尺度上事件空间中Birkhoff系统的Noether对称性与守恒量。首先,提出并建立时间尺度上事件空间中Birkhoff系统的变分问题;然后,求得时间尺度上事件空间中Birkhoff系统的参数方程;最后,基于Pfaff作用量在无限小变换下的不变性,给出了时间尺度上事件空间中Birkhoff系统的Noether对称性的定义,利用时间重新参数化方法,求得时间尺度上事件空间中Birkhoff系统的Noether定理并举例说明其应用。
In this paper, we studied the Noether symmetry and the conserved quantity for a Birkhoffian system on time scales in event space. First, the variational problem for a Birkhoffian system on time scales in event space was proposed and established. Then, Birkhoffian equations on time scales in event space were obtained. Last,based upon the invariance of the Pfaff action on time scales under the infinitesimal transformations of a group,the definition of the Noether symmetry for a Birkhoffian system on time scales in event space was given. Using the technique of time-re-parameterization, we obtained the Noether theorem for Birkhoffian system on time scales in event space and illustrated the application of the theorem.
出处
《苏州科技大学学报(自然科学版)》
CAS
2017年第3期1-7,共7页
Journal of Suzhou University of Science and Technology(Natural Science Edition)
基金
国家自然科学基金资助项目(11272227
11572212)
江苏省普通高校研究生科研创新计划资助项目(KYZZ15_0349)
苏州科技大学研究生科研创新计划资助项目(SKCX15_063)