期刊文献+

基于强定位与三点手眼标定的目标移载视觉引导算法 被引量:4

Objects Vision Guiding System Based on Strong Positioning and Hand-eye Calibration
下载PDF
导出
摘要 为了解决当前定位算法受目标背景干扰影响大,且其采用的物理接触标定技术易损伤工件表面的不足,提出了基于强定位与三点手眼标定的视觉引导算法。首先,利用高斯滤波处理Hessian矩阵,采用非极大值抑制法来确定特征点和方向,从而构造了surf特征点描述子,完成目标位置边缘和中心点的强定位,达到去除背景和环境光干扰,精确定位目标中心点与角度。然后提出三点标定法,计算缩放旋转矩阵和平移矩阵参数,完成Robot世界坐标与相机图像坐标的绑定映射。最后,编程实现算法和系统,实验测试结果显示:与当前工件材料移载系统相比,文中系统拥有更高的目标定位与标定移载成功率。 In order to solve the current localization algorithm big background interference affects calibration methods exist damage, physical contact with the workpiece material on the surface of the problem, hand-eye calibration was proposed based on strong orientation and three visual guidance systems. First, deepen the Hessian matrix, using Gaussian filter, using the maximum inhibition precisely determine the feature points and direction, in order to construct surf feature points description, finish strong positioning operator based on surf, to remove the background and the ambient light interference, the purpose of accurate positioning center of the target with Angle. And then put forward three points calibration method, calculation scale rotation matrix and translation matrix parameters, complete the Robot world coordinates and binding mapping camera image coordinates. Finally, program implementation algorithm and system, the experiment results showed that compared with the current workpiece material transfer system, this system has higher goal orientation and calibration transfer success rate.
作者 杜刚 张善文
出处 《组合机床与自动化加工技术》 北大核心 2017年第8期21-24,28,共5页 Modular Machine Tool & Automatic Manufacturing Technique
基金 国家自然科学基金(61473237) 陕西省自然科学基础研究计划(2014JM2-6096)
关键词 视觉引导 强定位 三点手眼标定 缩放旋转矩阵 visual guidance location three point calibration of hand eye zoom rotation matrix
  • 相关文献

参考文献7

二级参考文献74

  • 1李卓,郭立红.快速图像处理中阈值选取方法的比较研究[J].微计算机信息,2006(03S):224-225. 被引量:56
  • 2叶敏,周文晖,顾伟康.基于FPGA的实时图像滤波及边缘检测方法[J].传感技术学报,2007,20(3):623-627. 被引量:25
  • 3ZHU Z, JI Q. Novel eye gaze tracking techniques under natural head movement [ J ]. IEEE Transactions on Bio- medical Engineering, 2007,54 ( 12 ) : 2246-2260.
  • 4PRIBANIC T, CIFREK M, PEHAREC S. Light plane position determination for the purpose of structured light scanning [ C J. IEEE ISlE 2005, Dubrovnik, Croatia, USA .2005 : 1315-1320.
  • 5MUIS A, OHNISHI K. Eye-to-hand approach on eye-in- hand configuration within real-time visual servoing [ J ]. IEEE/ASME Trans on Robotics, 2005,10(4) :404-410.
  • 6MEDIONI G, KANG S B. Emerging topics in computer vision [ M ]. New Jersey, USA : Pearson Prentice Hall, 2005 : 215 -245.
  • 7JIMENEZ R, CERES R, PONS J L. A survey of comput- er vision methods for locating fruit on trees [ J ]. Transac- tions of the ASAE, 2003,43 ( 6 ) : 1911-1920.
  • 8万佩,秦岚,薛联,等.一种新型三自由度微定位新方法[J].国外电子测量与技术,2011,30(7):31-33.
  • 9Bay H, Ess A, Tuytelaars T, et al. SURF: Speeded up robust features. Computer Vis Image Underst, 2008, II0: 346-359.
  • 10Lowe D. Object recognition from local scale-invariant features. In: Proceedings of the 7th IEEE International Confer- ence on Computer Vision, Kerkyra, 1999. 1150-1157.

共引文献70

同被引文献26

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部