期刊文献+

基于支持向量机决策树的泵站稳态工况运行下状态识别 被引量:2

State recognition of the running pump station based on the Decision-tree SVM classifier
下载PDF
导出
摘要 根据统计学理论提出一种基于决策树支持向量机的泵站状态识别方法,支持向量机是基于统计学理论发展而来的学习方法,在处理小样本,非线性,高维数的问题上较为出色。泵站系统数据往往维度较高,通过主成分分析将数据压缩降维,利用处理过后的数据对三级支持向量机进行训练结合决策树建立泵站运行状态判别模型,进行泵站稳态运行下的状态识别。实验表明:该方法优点是训练时间短,识别准确度高,具有较强鲁棒性。 A Decision-tree SVM classifier is applied to the state recognition of the running pump station based on statistical learning theory(SLT).SVM is a novel machine learning method based on SLT and powerful for the problems with small sample, nonlinear and high dimension.The data of pump station system tends to have higher dimension, and the data is dimensioned down by principal component analysis.The Decision-tree SVM classifier, trained with the sampling data from the above dealing process and forming an identification model, identifies the state of the pump station.The test results show that the proposed classifier has an excellent performance on correcting ratio and training speed.
出处 《水资源与水工程学报》 CSCD 2017年第3期163-167,共5页 Journal of Water Resources and Water Engineering
关键词 泵站 状态识别 支持向量机 决策树 pump station state recognition decision-tree
  • 相关文献

参考文献7

二级参考文献58

  • 1曾克娥.电力系统继电保护装置运行可靠性指标探讨[J].电网技术,2004,28(14):83-85. 被引量:61
  • 2高翔,刘韶俊.继电保护状态检修及实施探讨[J].继电器,2005,33(20):23-27. 被引量:62
  • 3杨建军,刘扬,魏立新,战红.多源注水系统泵站优化调度的双重编码混合遗传算法[J].自动化学报,2006,32(1):154-160. 被引量:10
  • 4庞全,谭炜,杨翠容.采用MOS气敏阵列与B-P网络的气体分析方法研究[J].传感器技术,1997,16(1):12-14. 被引量:12
  • 5Osuna E, Freund R, Girosi F. Training support vector machines: an application to face detection. In: Proceedings of Computer Vision and Pattern Recognition 97', Puerto Rico, 1997. 130 ~ 136.
  • 6Platt J. Fast training of SVMs using sequential minimal optimization. In:Scholkpf B, Burges C, Smola A, eds., Advances in kernel methods-support vector machine learning, Cambridge: MIT Press, 1998.
  • 7Berther T, Davies P. Condition monitoring of check valves in reciprocating pumps. Tribology Transactions, 1991, 34:321 ~326.
  • 8Xu W H, Fu K. An intelligent diagnostic system for reciprocating machine.In: Proceedings of IEEE International Conference on Intelligent Processing Systems, Beijing, 1997, 1 520~ 1 522.
  • 9Sbi Wengang, Wang Rixin, Huang Wenhu. Application of rough set theory to fault diagnosis of check valves in reciprocating pumps. In: Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering, Toronto, 2001. 1 247~ 1 250.
  • 10Boser B, Guyon I, Vapnik B. A training algorithm for optimal margin classitiers. In: Fifth Annual Workshop on Computational leaming Theory, Pittsburgh: ACM Press, 1992.

共引文献94

同被引文献7

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部