期刊文献+

Adomian修正分解法的后处理方法比较

A comparison of the after-treatment techniques for Adomian modified decomposition method
下载PDF
导出
摘要 Adomian修正分解法在求解非线性微分方程中得到广泛应用。Adomian修正分解法的主要特点在于计算简单快速,并且不需要进行线性化或离散化。但是Adomian修正分解法的计算精度取决于其收敛域。为了扩大Adomian修正分解法的收敛域,需要对所得解进行后处理,目前常见的后处理方法包括Padé近似、LaplacePadé近似和多步迭代方法。本文首先简要回顾了Adomian修正分解法,然后讨论了这三种后处理方法,最后通过Duffing振子为例对这些后处理方法的优缺点进行讨论和分析。数值计算结果表明,多步迭代方法能够加速Adomian修正分解法解的收敛,并扩大其收敛域。 The theory of the Adomian modified decomposition method(AMDM)for solving nonlinear differential equations is well established.The main advantages of AMDM are computational simplicity and no involvement of any linearization or discretization.However,the accuracy of the AMDM solution depends on the convergence region.To extend the convergence region of the AMDM,several aftertreatment techniques(such as Padéapproximant,Laplace-Padéapproximant and multistage method)have been proposed to improve the accuracy of the AMDM on a wide region.In this study,first,a brief review of the AMDM is given.Then these three after-treatment techniques are discussed.Finally,with examples of free and force Duffing oscillator problems,numerical results are presented to compare the drawbacks and advantages of these after-treatment techniques.It is shown that the multistage after-treatment technique offers an accurate and effective method for solving nonlinear differential equations in a wide applicable region.
作者 毛崎波
出处 《计算力学学报》 CSCD 北大核心 2017年第4期517-522,共6页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(11464031 51265037) 航空科学基金(2015ZA56002) 江西省高校科技落地计划(KJLD12075)资助项目
关键词 Adomian修正分解法 后处理方法 Padé近似 Laplace-Padé近似 多步迭代方法 Adomian modified decomposition method after-treatment techniques Padé approximant method Laplace-Padéapproximant multistage method
  • 相关文献

参考文献3

二级参考文献35

  • 1D. Mehdi, H. Asgar, and S. Mohammad, Appl. Math. Comput. 189 (2007) 1034.
  • 2A.M. Wazwaz, Appl. Math. Comput. 100 (1999) 13.
  • 3P. Yang, Y. Chen, and Z.B. Li, Chin. Phys. B 17 (2008) 3953.
  • 4Z. Wang and H.Q. Zhang, Chaos, Solitons and Fractals (2007) doi: 10.1016/j.chaos.2007.08.011.
  • 5Y.X. Yu, Q. Wang, and C.X. Gao, Chaos, Solitons and Fractals 33 (2007) 1642.
  • 6D. Baldwin, U. Goktas, and W. Hereman, Comput. Phys. Commun. 162 (2004) 203.
  • 7Z.Y. Yan, Nonlinear Analysis 64 (2006) 1798.
  • 8H. Aratyn, L.A. Ferreira, J.F. Gomes, and A.H. Zimerman, Phys. Lett. B 31{} (1993) 85.
  • 9E. Fermi, J. Pasta, and S. UIam, Collected papers of Enrico Fermi II, University of Chicago Press, Chicago (1965).
  • 10Z. Wang and H.Q. Zhang, Chin. Phys. 15 (2006) 2210.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部