期刊文献+

基于TESPAR和LS-SVM算法的滚动轴承退化趋势预测 被引量:9

Degradation Trend Prediction of Rolling Bearings Based on TESPAR and LS-SVM Algorithm
原文传递
导出
摘要 在分析了滚动轴承退化趋势预测是实现滚动轴承预防维护关键的基础上,提出了基于时间编码信号处理与识别(TESPAR)和最小二乘支持向量机(LS-SVM)相结合的滚动轴承性能退化趋势预测新方法。将通过TESPAR提取的性能退化特征集输入到LS-SVM中完成了滚动轴承的性能退化趋势预测,最后通过实例验证了所提出方法的有效性。 The prediction of the degradation trend of rolling bearing maintenance of rolling bearing, a new method of rolling bearing degradatio time-coded signal processing and recognition (TESPAR) is the key to realize the n trend prediction based on and least squares support vector machine(LS- are predicted by inputting the performance degradation feature set extracted by TESPAR into LS-SVM. Finally, the effectiveness of the proposed method is verified by an example.
作者 陈龙 谭继文 姜晓瑜 CI-IEN Long TAN Ji-wen JIANG Xiao-yu(Qingdao University of Technology, Qingdao 266520, Chin)
机构地区 青岛理工大学
出处 《煤矿机械》 2017年第8期18-20,共3页 Coal Mine Machinery
基金 国家自然科学基金项目(51075220) 高等学校博士学科点专项科研基金(20123721110001)
关键词 滚动轴承 TESPAR LS-SVM 退化趋势预测 rolling bearing TESPAR LS-SVM degradation trend prediction
  • 相关文献

参考文献5

二级参考文献50

  • 1张超琼,苗夺谦,岳晓冬.基于高斯混合模型的语音性别识别[J].计算机应用,2008,28(S2):360-362. 被引量:1
  • 2奚立峰,黄润青,李兴林,刘中鸿,李杰.基于神经网络的球轴承剩余寿命预测[J].机械工程学报,2007,43(10):137-143. 被引量:56
  • 3Gebraeel N, Lawley M, Liu R, et al. Residual life predictions from vibration-based degradation signals: a neural network approach[ J]. Industrial Electronics, IEEE Transactions on, 2004, 51(3): 694-700.
  • 4Shao Y, Nezu K. Prognosis of remaining bearing life using neural networks [ J ]. Proceedings of the Institution of Mechanical Engineers, Part I : Journal of Systems and ControlEngineering, 2000, 214 ( 3 ) : 217 - 230.
  • 5Janjarasjitt S, Ocak H, Loparo K A. Bearing condition diagnosis and prognosis using applied nonlinear dynamical analysis of machine vibration signal[ J ]. Journal of Sound and Vibration, 2008,317(1/2) : 112 - 126.
  • 6Liao H, Zhao W, Guo H. Predicting remaining useful life of an individual unit using proportional hazards model and logistic regression model [ C ]. Reliability and Maintainability Symposium, 2006 : 127 - 132.
  • 7JimSnez G A, Munoz A O, Duarte-Mermoud M A. Fault detection in induction motors using Hilbert and wavelet transforms [ J ]. Electrical Engineering, 2007, 89 (3) : 205 - 220.
  • 8Abbasion S, Rafsanjani A, Farshidianfar A, et al. Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine [J ]. Mechanical Systems and Signal Processing, 2007, 21 ( 7 ) : 2933 - 2945.
  • 9Yan J, Guo C, Wang X. A dynamic multi-scale Markov model based methodology for remaining life prediction [ J ]. Mechanical Systems and Signal Processing, 2011, 25 ( 4 ) : 1364 - 1376.
  • 10Ross R. Formulas to describe the bias and standard deviation of the ml-estimated weibull shape parameter[ J ]. Dielectrics and Electrical Insulation, IEEE Transactions on, 1994, 1(2) : 247 -253.

共引文献98

同被引文献59

引证文献9

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部