期刊文献+

物流配送车辆优化调度仿真研究 被引量:11

Research on Optimization Simulation for Logistic Vehicle Scheduling Problem
下载PDF
导出
摘要 传统物流配送车辆调度研究存在目标单一,约束条件考虑有限,路径规划不合理等问题,不利于实际应用。调度优化可有效节约资源,提升企业运营效益。为了降低配送车辆的距离和时间总成本,提高求解算法的效率和精度,提出一种适用型整数规划模型和改进型最大最小蚁群算法。首先建立了针对时变环境、带时间窗、限制车辆容量等约束条件的车辆优化调度模型,采用结合时变策略的改进型最大最小蚁群算法求解调度模型,并给出了具体实现流程。以Solomon测试集对算法性能进行测试,仿真结果表明,改进型最大最小蚁群算法具有较高的求解精度和收敛速度,适用型模型及算法实用地、有效地优化了物流配送车辆的调度问题。 Traditional vehicle scheduling problem is single - goaled with limited constraint conditions, which is not beneficial to practical application. Intelligent dispatching of vehicles can conserve resources effectively and promote benefit. In order to lower total cost of distance and time and increase e^ciency and accuracy of algorithm, we pro- posed a suitable integer programming model and an improved max - min ant colony system algorithm. The research is aiming at constraint conditions such as time -dependent environment,time windows and capacity limitation. Firstly, this paper abstracted critical factors and put forward a targeted mathematical model. Secondly, we presented an im- proved max -min ant colony system algorithm with temporal change strategy. Finally, we adopted Solomon set to test the algorithm. Simulations reveal that the improved method has better performance in solving accuracy and conver- gence rate. The model and algorithm optimize logistic vehicle scheduling problem practically and effectively.
作者 杨福兴 张琪
出处 《计算机仿真》 北大核心 2017年第8期179-183,232,共6页 Computer Simulation
基金 国家"十二五"科技支撑计划(014BAD10B06)
关键词 智能交通系统 车辆调度 时变路网 时间窗 最大最小蚁群算法 Intelligent transportation system Vehicle scheduling Time varying road network Time window Max -min ant colony system algorithm
  • 相关文献

参考文献4

二级参考文献38

  • 1崔雪丽,马良,范炳全.车辆路径问题(VRP)的蚂蚁搜索算法[J].系统工程学报,2004,19(4):418-422. 被引量:48
  • 2刘云忠,宣慧玉.车辆路径问题的模型及算法研究综述[J].管理工程学报,2005,19(1):124-130. 被引量:83
  • 3经怀明,张立军.多车型车辆调度问题的建模与仿真[J].计算机仿真,2006,23(4):261-264. 被引量:23
  • 4Shiu Yin Yuen, Chi Kin Chow. A Genetic Algorithm That Adap-. tively Mutates and Never Revisits [ J ]. IEEE transactions on evolu- tionarycomputation, 2009,13 ( 2 ) :454 -458.
  • 5L Y Tseng, Y T Lin. A hybrid genetic local search algorithm for the permutation flowshop scheduling problem [ J ]. European Jour- nal of Operational Research, 2009,198 ( 1 ) :84-92.
  • 6廖洁君,陈燕.配送调度优化模型的研究及应用[D].大连海事大学硕士学位论文,2005.
  • 7闫旭丽.物流配送关键技术优化方法研究[D].天津大学硕士论文,2007.
  • 8Daganzo C F. Crane productivity and ship delay in ports[J].TRANSPORTATION RESEARCH RECORD,1989,(1251):1-9.
  • 9Kim K H. A crane scheduling method for port container terminals[J].European Journal of Operational Research,2004.752-768.
  • 10Lee D H,Wang H Q,Miao L X. Quay crane scheduling with non-interference constraints in port container terminals[J].Transportation Research Part E:Logistics and Transportation Review,2008,(01):124-135.

共引文献41

同被引文献80

引证文献11

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部