期刊文献+

缓冲质子源LiNbO_3波导折射率计算及实验 被引量:1

Calculation and Experimental Demonstration of Waveguide Refractive Index of LiNbO_3 Fabricated by Buffered Proton Source
原文传递
导出
摘要 为实现铌酸锂退火质子交换(APE)波导折射率分布的准确计算,选择含苯甲酸锂的苯甲酸缓冲液作为质子交换质子源,高温退火制作了波导样本。针对该工艺过程建立退火质子交换波导模型,包括非线性扩散模块和光学数值仿真模块,分别计算APE波导折射率及其模式有效折射率。以测得的样本波导模式有效折射率和计算的有效折射率差的均方根构建评价函数(FOM),结合遗传算法提取该工艺条件下质子扩散参数,实现了不同交换深度和退火时间波导折射率分布及其光学特性的一体化计算。实验表明:FOM小于0.001,计算折射率分布同IWKB方法测得结果吻合较好,最大偏差约0.002。 In order to accurately calculate the refractive index profile of the annealed proton- exchanged (APE) lithium niobate waveguide, the buffered benzoic acid with lithium benzoate is chosen as proton-exchanged (PE) source, and the APE waveguide samples are fabricated by the annealing process. The APE model including nonlinear diffusion module and optical numeric simulation module has been established to calculate the refractive index profile of the APE waveguide and its mode effective indices, respectively. The generic method with the help of the figure of metric (FOM) which is the mean square deviation between the calculated mode effective indices and the measured values of the APE waveguides is used to extract the diffusion parameters of proton, the refractive index profile and its effective indices of the waveguide with different proton-exchanged depths and annealing time can be calculated. The experiment results show that the FOMs are below 0. 001 and the calculated refractive index profiles and the experimental inverse Wentzel-Kramers-Brillouin (IWKB) profiles are in good agreement with the maximum difference of -0. 002.
出处 《半导体光电》 北大核心 2017年第4期546-550,556,共6页 Semiconductor Optoelectronics
基金 中航工业集团公司创新基金项目(2011D61818)
关键词 集成光学 退火质子交换 铌酸锂波导 折射率分布 integrated optics annealed proton exchange lithium niobate waveguide refractive index profile
  • 相关文献

参考文献4

二级参考文献39

  • 1符运良,袁一方,金国良,陈抱雪.新的质子源质子交换制作的Z切LiNbO_3光波导特性[J].中国激光,2004,31(9):1041-1044. 被引量:2
  • 2赵薇,王葵如,余国贤.LiNbO_3条波导的光损伤[J].中国激光,1994,21(12):940-944. 被引量:4
  • 3Wooten E L.A review of lithium niobate for fiber-optic communication systerns[J].IEEE Journal of Selected Topics in Quantum Electron,2000(6):69-82.
  • 4Kazuto Noguchi,Osamu Mitomi,Hiroshi Miyazawa.Millimeter-wave Ti-LiNbO3 optical modulators[J].IEEE Journal of Lightwave Technology,1998,16(4):615 -619.
  • 5Gopalakrishnan G,Burns W K,McElhanon R W.Performance and modeling of broadband LiNbO3 traveling wave optical intensity modulators[J].IEEE Journal of Lightwave Technol,1994,12:1807-1819.
  • 6Gopalakrishnan G,Burns W K,Bulmer C H.Electrical loss mechanisms in traveling wave LiNbO3 optical modulator[J].Electronics Letters,1992,28(2):207-209.
  • 7W E Lee, N A Sanford, A H Heuer. Direct observation of structural phase changes in proton-exchanged LiNbO3 waveguides using transmission electron microscopy [J].J Appl Phys, 1986, 59(8):2629-2633.
  • 8A Loni, R W Keys, R M De La Rue et al. Optical characterisation of Zkcut proton exchanged LiNbO3 waveguides fabricated using orthophosphoric and pyrophosphorie acid [J].IEE Proc , 1989, 136(6) :297-300.
  • 9Y N Korkishko, V A Fedorov, V V Nosikov et al. The phase diagram of HxLi1-xNbO3 optical waveguides [C]. SPIE,1997, 2997:188-200.
  • 10T Mukaide, T Yagi, N Miyajima et al. High pressure and high temperature phase transformations in LiNbO3 [J]. J Appl Phys , 2003, 93(7):3852-3858.

共引文献13

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部