期刊文献+

条干均匀度仪波谱图算法设计与实现

Realization of Spectro Graphic Algorithm of Strip Evenness
下载PDF
导出
摘要 条干均匀度仪的波谱图能够精确地反映出纱疵的周期性特征,从而可以快速地确定出纺纱工艺流程中故障的位置;但是如何将波谱图快速准确地实现一直是研究的难点;基于数字信号处理中的重采样定理,通过对不同机械故障所产生的纱线信号进行分析,改进了条干均匀度仪波谱图算法,该算法在需要观测的波长范围内构建了110个不同频带的带通滤波器,根据相邻滤波器频带关系分组进行波谱分析;通过DSP28335微处理器的数据采集、信号处理和上位机波谱图显示的系统进行实验,结果证明了该算法的可行性;其改进后的算法极大地减小了以往所用硬件的复杂度、提高了运算速度并拓宽了波谱图的可观测范围,且能够更精确的检测出故障位置。 The spectrogram of the dryness uniformity instrument can accurately reflect the periodic characteristics of the yarn defect,so that the position of the fault in the spinning process can be quickly determined.But how to quickly and accurately realize the spectrum is always the focus of the study.Based on the resampling theorem in digital signal processing,this paper analyzes the yarn signal generated by different mechanical faults,and improves the spectral algorithm of the uniformity of the strip.The algorithm builds 110 different wavelengths bandpass filter in the wavelength range that needs to be observed,according to the adjacent filter band relationship grouping analysis.Through the DSP28335 microprocessor data acquisition,signal processing and host computer spectrum display system experiments,the results prove the feasibility of the algorithm.The improved algorithm greatly reduces the complexity of the hardware used in the past,improves the operation speed and increases the observable range of the spectrum,and can detect the fault position more accurately.
作者 李征 马建伟
出处 《计算机测量与控制》 2017年第8期179-182,共4页 Computer Measurement &Control
基金 国家自然科学基金项目(U1504617)
关键词 波谱图 机械故障 带通滤波器 spectro graphic mechanical failure bandpass filter
  • 相关文献

参考文献6

二级参考文献34

  • 1吴正茂.IIR数字滤波器的MATLAB设计与实现[J].长江工程职业技术学院学报,2004,21(2):29-31. 被引量:3
  • 2吕园荪,吕梓翔.HART协议及其应用[J].石油规划设计,2005,16(6):13-15. 被引量:5
  • 3宋晓梅.波谱分析滤波器的算法研究及LabVIEW实现[J].西安工程科技学院学报,2005,19(4):393-396. 被引量:4
  • 4陶然,邓兵,王越.分数阶FOURIER变换在信号处理领域的研究进展[J].中国科学(E辑),2006,36(2):113-136. 被引量:80
  • 5张雄伟,曹铁勇.DSP芯片的原理与开发应用[M].北京:电子工业大学出版社,2008.
  • 6Hypo-sung A, Varsga B, Yangquan C. Fractional-order Integral and Derivative Controller for Temperature Profile Tracking [J]. Sadahana, Academy Proc. in Eng., India, 2009, 34(5): 833-850.
  • 7Ramiro S, Barbosa J A, Tenreiro M, Manuel F S. Time Domain Design of Fractional Differ-integrators Using Least- Squares [J]. Signal Processing, 2006, 86: 2567-2581.
  • 8Ozaktas H M, Arikan O, Kutay M A, Bozdagi G. Digital Computation of the Fractional Fourier Transform [J]. IEEE Trans. Signal Processing, 1996, 44(9): 2141-2150.
  • 9Ostalczyk P. Fundamental Properties of the Fractional-order Discrete-time Integrator [J]. Signori Processing, 2003, 83: 2367-2376.
  • 10Yangquan C, Bias M V. A new IIR-type Digital Fractional Order Differentiator [J]. Signal Processing, 2003, 83(11): 2359-2365.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部