摘要
关于追踪目标问题,一般文献仅计算了追上所用的时间,或者在给定位置追上的条件下,追踪者与目标的速度比的取值.而获得追踪者运动轨迹的解析解,显然更重要也更困难.本文在追踪问题一般表述的基础上,通过建立并求解追踪者运动的二阶微分方程,得到追踪轨迹的解析解,最后顺便简捷地推导了追上的地点、时间以及在给定位置追上时二者的速度比.
For tracking problem, general literatures just compute the time of catching up with object or under the known position, where tracker catches up and the ratio of velocity between them is calculated. Obviously, it is more important to obtain analytic solution. This paper obtains the general expression about the question by establishing and solving 2nd-order ODE. It deduces the same conclusions with other literatures under the known conditions at last.
出处
《大学物理》
北大核心
2017年第7期19-20,共2页
College Physics
关键词
追踪问题
运动轨迹
二阶微分方程
降阶
解析解
tracking problem
movement locus
2nd-order ODE
step-down order
analytic solution