期刊文献+

甲状腺囊实性结节超声诊断的Logistic回归分析 被引量:11

Application of the binary regression mode in analyzing the ultrasonographic features of partially cystic thyroid nodules
下载PDF
导出
摘要 目的应用Logistic回归模型评价甲状腺囊实性结节的超声检查各特征指标对良恶性结节鉴别诊断的意义。方法回顾分析手术病理证实的136个甲状腺囊实性结节(良性结节89个,恶性结节47个)的术前的灰阶超声和彩色多普勒的各项超声诊断指标,建立Logistic回归模型,并评价其预报能力。结果共有4个特征进入Logistic回归模型,分别是囊实性结节内钙化、实性部分位置、边缘、内部结构。Logistic回归模型对甲状腺囊实性结节良恶性预报的准确率为94.1%(128/136),ROC曲线下面积为0.930±0.029。结论超声特征的Logistic回归模型有助于甲状腺囊实性结节的良恶性鉴别诊断。 Objective To evaluate the application of Logistic regression model in analyzing sonographic fea- tures of Partially cystic thyroid nodules. Methods The indexes of two-dimensional uhrasonography and color Doppler flow imaging of 89 benign and 47 malignant Partially cystic thyroid nodules were retrospectively reviewed, which were confirmed by pathological diagnosis after surgery.A Logistic model for predicting malignant of Partially cystic thyroid nodule was obtained, and assessment of the predicting value was performed. Results Four sonographic characteristics were finally entered into the Logistic regression model including calcification type, margin, position of solid portion, internal content of Partially cystic thyroid nodules. The percentage correction of prediction was 94.1% (128/136). The area under curve was 0.930±0.029. Conclusion The Logistic model of sonographic features can help differentiate benign from malignant Partially cystic thyroid nodules.
出处 《实用医学影像杂志》 2017年第4期289-291,共3页 Journal of Practical Medical Imaging
关键词 超声检查 甲状腺结节 囊实性结节 诊断 LOGISTIC模型 Ultrasonography Thyroid nodule Partially cystic nodule Diagnosis Logistic models
  • 相关文献

参考文献2

二级参考文献18

  • 1Cappelli C, Castellano M, Pirola I, et al. The predictive value ofultrasound findings in the management of thyroid nodules. QJM,2007,100(1):29-35.
  • 2Shimura H, Haraguchi K, Hiejima Y, et al. Distinct diagnosticcriteria for ultrasonographic examination of papillary thyroid car-cinoma :A multicenter study. Thyroid, 2005,15(3) :251-258.
  • 3Koike E, Noguchi S, Yamashita H, et al. Ultrasonographic char-acteristics of thyroid nodules: Prediction of malignancy. ArchSurg, 2001,136(3):334-337.
  • 4Jun P, Chow LC, Jeffrey RB. The sonographic features of papillary thy-roid carcinomas: Pictorial essay. Ultrasound Q, 2005,21(1) :39-45.
  • 5Cappelli C, Castellano M, Pirola I, et al. Thyroid nodule shapesuggests malignancy. Eur J Endocrinol,2006,155(1) : 27-31.
  • 6Hoang JK, Lee WK, Lee M, et al. US features of thyroid malig-nancy :Pearls and pitfalls. Radiographics, 2007, 27(3) : 847-860.
  • 7Das DK, Mallik MK, Haji BE, et al. Psammoma body and itsprecursors in papillary thyroid carcinoma: A study by fine-needleaspiration cytology. Diagn Cytopathol, 2004,31(6) :380-386.
  • 8Moon HJ, Kwak JY, Kim MJ, et al. Can vascularity at powerDoppler US help predict thyroid malignancy. Radiology, 2010,255(1):260-269.
  • 9David S Cooper,Gerard M Doherty,Bryan R Haugen,Richard T Kloos,Stephanie L Lee,Susan J Mandel,Ernest L Mazzaferri,Bryan McIver,Furio Pacini,Martin Schlumberger,Steven I Sherman,David L Steward,R Michael Tuttle.Revised American Thyroid Association Management Guidelines for Patients with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid . 2009
  • 10A Ahuja,M Ying.Sonography of Neck Lymph Nodes. Part II: Abnormal Lymph Nodes[J]. Clinical Radiology . 2003 (5)

共引文献29

同被引文献68

引证文献11

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部